AFRL-IF-RS-TR-1998-39
Final Technical Report
May 1998

OPTIMIZATION TECHNIQUES FOR TRUSTED
SEMANTIC INTEROPERATION

SRI International

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. B401

19980708 0o

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

[DTIC QUALITY mverECTED 1

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-39 has been reviewed and is approved for publication.

%7@4% D}/ Dﬂg

APPROVED:
MARY L. DENZ
Project Engineer
FOR THE DIRECTOR: W ’

WARREN H. DEBANY, JR.
Technical Advisor, Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

OPTIMIZATION TECHNIQUES FOR TRUSTED SEMANTIC INTEROPERATION

Steven Dawsen

Contractor: SRI International

Contract Number: F30602-94-C-0198

Effective Date of Contract: 31 August 1994

Contract Expiration Date: 30 October 1997

Program Code Number: 7E20

Short Title of Work: Optimization Techniques for Trusted
Semantic Interoperation

Period of Work Covered: Aug 94 - Oct 97

Principal Investigator: Steven Dawsen
Phone: (415) 859-5390

AFRL Project Engineer: ~ Mary L. Denz
Phone: (315) 330-2030

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by
Mary L. Denz, AFRL/IFGB, 525 Brooks Rd, Rome, NY 13441-4505.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headguarters Services, Directorate for Information
Operations and Reports, 1215 Jafferson Davis Highway, Suite 1208, Arlington, VA 222024302, and to the Otfice of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20603,

1. AGENCY USE ONLY /Leave hiank] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1998 Final __ Aug 94 - Oct 97
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

C - F30602-94-C-0198
OPTIMIZATION TECHNIQUES FOR TRUSTED SEMANTIC INTEROPERATION|PE - 62301E, 33140F

PR - B401
6. AUTHOR(S) TA - 00
wuU - 01
Steven Dawsen
S
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

SRI International
333 Ravenswood Avenue
Menlo Park CA 94025-3493 N/A

I
9. SPONSORING/MONITORING AGENCY NAME(S} AND ADDRESS(ES) 10. SPONSORINGIMONITORING
, AGENCY REPORT NUMBER
Defense Advanced Research Projects Agency Air Force Research Laboratory/IFGB AFRLIF-RS-TR
3701 North Fairfax Drive 525 Brooks Road -IF-RS-TR-1998-39
Atlington VA 22203-1714 Rome NY 13441-4505

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Mary L. Denz/IFGB/(315) 330-2030

e I
12b. DISTRIBUTION CODE

1Za. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. ABSTRACT /Maximum 200 words/

SRI International has completed a research program on the development of techniques and tools for efficient, trusted
interoperation of autonomous heterogeneous information sources. This program has produced novel techniques for
integration of heterogeneous databases into large applications, efficient algorithms for optimization and security of semantic
interoperaiton, and a prototype query mediation system that demonstrates the utility and effectiveness of these techniques and

algorithms.

14. SUBJECT TERMS 15. NUMBER OF PAGES
112
Computer Security, Trusted Database Management, Security Policy 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
Standard Form 298 %Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18

Designed using Perform Pro, WHSIDIOR, Oct 84

Contents

1 Introduction 1
1.1 Problem Statement 1
1.2 Issues e e 2

1.2.1 Representational Mismatches 2
1.2.2 Semantic Mismatches 2
1.2.3 Security Policy Mismatches 3
1.3 Requirements 3
1.3.1 Autonomy 3
1.3.2 Automation e 4
1.3.3 Efficiency 4
1.4 Summaryof Results 4

2 Mediation Approach 6

3 Mediation Architecture 8
3.1 Components i i i e e e 8
3.2 Query Mediation 10

4 Semantic Mediation 13
4.1 Mediation Language e e e 13
4.2 Transformation i 14
4.3 Model-Free Optimization 15

4.3.1 Folding Algorithms 15
4.3.2 Query Minimization 17
4.3.3 Most General Queries. 17
4.4 Translation e 17

5 Security Mediation 18

5.1 AccessControl e e e e - 19
5.1.1 A Hybrid Approach 20

5.2 Security Translation e 20
5.2.1 Translation of MAC Policies 20
5.2.2 Sample Translation 21

5.3 Translation Consistency« 22
5.3.1 Integrated Security Policies 23

6 Prototype Mediation System 24
6.1 Overview of Mediationo 25
6.2 HTML/CGIInterface« oo v oo 25
6.3 Query Translation.o 26
6.4 Query Transformation 26
6.4.1 Application/Resource Relationships 27
6.42 Resource Usage« 27
6.4.3 Access Control 30

6.5 Global Query Plan« e 31
6.5.1 Generation e e e e e 31
6.5.2 Optimization o 34
6.5.2.1 Projectiono 34

6.5.2.2 Cross Product Elimination. 34

6.6 Local QueryPlano 36
6.7 Plan Execution o o v i i it 37
6.7.1 Query Dispatcher o 37
6.7.2 Result Processor« 38

6.8 WEIADPEIS . .« v v v v e v e e e e e e e 38
6.9 Knowledge Base oo 39
6.9.1 Knowledge Base Editor 39
6.9.2 Security Policy Editor 39

6.10 Adding Databases to a Mediated System 40
6.11 Implementation Summary 41
7 Conclusion 42
7.1 Further Work o e e 42
7.1.1 Short- to Medium-Term Requirements 43
7.1.2 Longer-Term Issues 44

ii

A System Demonstration Report A-1

Al
A2

A3

A4

A5

Application Scenario A-1
Integration and Mediation A-3
A.2.1 Semantic Relationships A-5
A.2.2 Security Relationships, A-5
System Demonstration A-7T
A.3.1 Connecting to the System A-7
A32 LoggingIn................. A-7
A.3.3 Selecting an Information Category A-7
A34 ASimpleQuery A-8
A35 TheLogFile A-8
A.3.5.1 Interpreting the Log File. A-8
Additional Demonstration Queries A-9
A4l AccessControl, .. A9
A.4.2 All Sources with Access Control A-9
A.4.3 Complex Mediation A-10
A44 Other Queries A-10
Query Transcripts A-15
Ab5.1 SimpleQuery, A-15
A.5.2 Access Control — Administrative A-16
A.5.3 Access Control - Financial A-22
A54 AllSources - Clinical A-26
A.5.5 All Sources— Personal A-30
Ab5.6 Complex Query A-32

1

Chapter 1

Introduction

SRI International has completed a research program on the development of tech-
niques and tools for efficient, trusted interoperation of autonomous heterogeneous
information sources. This program has produced novel techniques for integra-
tion of heterogeneous databases into large applications, efficient algorithms for
optimization and security of semantic interoperation, and a prototype query me-
diation system that demonstrates the utility and effectiveness of these techniques
and algorithms.

1.1 Problem Statement

Trusted interoperation of heterogeneous information sources is a pressing need in
both the military and commercial sectors as organizations attempt to share data
from disparate databases while maintaining data security. Each database may be
developed independently and maintained to serve the needs of a single organiza-
tional unit. Secure exchange of data between such databases can be problematic
because of differences in representation and semantics of the data as well as differ-
ences in the security policies designed to protect data from unauthorized access.
Although translators can be constructed to reformat data from one representation
to another, such a translation does not guarantee that the combined, translated
data are meaningful. In the interoperation of multilevel secure (MLS) databases
with system-high legacy databases, similar problems arise in the representation
and semantics of security policies.

1.2 Issues

Technology that adequately addresses the problem of trusted semantic interoper-
ation must address three core issues.

1.2.1 Representational Mismatches

In heterogeneous information sources, the same data can be represented in various
incompatible structures. Conversely, the same data structures may be used to
represent data with incompatible semantics [18]. In general, there does not exist
a universal representation that is perfect for every application [1, 6, 8]. Examples
of representational mismatches include ‘

e Identification. Patients might be identified by locally assigned patient ID
numbers in a clinical database, but by Social Security numbers in a billing
database. The nature of the operations supported by the different databases
requires that different identifiers be used.

e Biased view. The many-to-one relationship between patients and their pri-
mary physicians can be represented as a binary predicate, a binary Boolean
function, a physician attribute attached to patient objects, or a multivalued
patient attribute attached to physician objects. It is infeasible to represent
the relationship in all possible structures.

1.2.2 Semantic Mismatches

Semantic differences in the data stored in heterogeneous databases arise naturally
from the diverse needs of applications. In addition, relationships between hetero-
geneous data may be incomplete or uncertain. Examples of semantic mismatches

include

e Scope. A hospital database includes both inpatients and outpatients, while
a clinic database includes only outpatients.

e Granularity. A laboratory database tracks individual tests, while an in-
surance database may track panels of tests.

e Temporal basis. Transaction time is used in a clinic database, but admis-
sion and discharge times are used in a hospital database.

1.2.3 Security Policy Mismatches

The interoperation of heterogeneous databases is further complicated by the need
to protect data from unauthorized access. Examples of security mismatches in-
clude

e Classification. Data in one database may be classified as CONFIDEN-
TIAL, while the same data in another database might be classified as TOP
SECRET.

e Unit of classification. One database employs element-level classification,
while another uses tuple-level classification (row labels) [14].

e Semantics. In one database, classification of attribute CARGO means that
unauthorized users should not know which flights carry what cargo, but in
another it means that unauthorized users should not know which cargo is
shipped to which destination.

e Policy model. One database may be multilevel secure (MLS) with manda-
tory access control, while another database is system high with discretionary

access control.

1.3 Requirements

Because of the diverse needs of autonomous organizations, heterogeneity will per-
sist rather than disappear. Providing trusted interoperation of autonomous het-
erogeneous information sources not only makes it possible to share data in isolated
databases reliably, but also increases the confidence of users and the willingness
of database owners/administrators to participate in the sharing of data. Effective
support for trusted interoperation must satisfy three main requirements.

1.3.1 Autonomy

Database autonomy must be respected and preserved. The autonomy requirement
takes two forms:

e Use. Database users should not be required to learn new query languages or
new schemas to access data from multiple sources. Ideally, the only impact

3

of trusted interoperation on users of information applications should be a
positive orie, namely, the availability of additional information.

e Administration. Trusted interoperation should not result in an additional
administrative burden on the owners of participating database systems.

1.3.2 Automation

Trusted interoperation should be automated. Neither users nor administrators
should be required to resolve mismatches manually, even if manual resolution is
possible. Security policy mismatches require particular care. Security mismatches
may be subtle, and manual resolution, even by trusted security officers, can be
unreliable. Mismatches should be identified once, when an information source
is integrated into an application (“compile time”), and they should be resolved
automatically and in real time when the application is used (“run time”).

1.3.3 Efficiency

Automated interoperation should be computationally efficient. Mechanisms to en-
able trusted interoperation should be as simple as possible, yet powerful enough
to enable runtime resolution of mismatches across the wide range of data models
and query languages in existing database systems. The use of more powerful and
more expensive mechanisms should be limited to the integration phase, where
the difficult activity of characterizing relationships and mismatches must be per-

formed.

1.4 Summary of Results

The research described in this report builds on work performed at SRI Interna-
tional on a prior DARPA-sponsored research program, entitled “Semantic Inter-
operation via Intelligent Mediation”, which established the viability of a query
mediation approach to semantic interoperation. The current effort significantly
extends the previous work in three main areas: (1) optimization techniques for
increased efficiency of semantic interoperation, (2) scope of interoperability (data
models and query languages), and (3) techniques for trusted interoperation. More
specifically, this report details the following results in the development of tech-

niques and tools for trusted semantic interoperation: :

4

Novel and efficient algorithms for automated resolution of semantic mis-
matches in heterogeneous information sources.

Optimizations for the process of retrieving maximal information from
sources containing data relevant to a user’s query.

Translation techniques for unstructured and semistructured information
sources, such as those that are maintained on the World Wide Web (WWW).

Novel and efficient algorithms for automated (run-time) resolution of mis-
matches in security policies of trusted database systems.

Automated support for (compile-time) identification of security policy mis-
matches.

A prototype query mediation system that demonstrates the application of
the techniques and algorithms.

The main text of this report describes the results in more detail. The demonstra-
tion of the final prototype system is documented in the appendix.

Chapter 2

Mediation Approach

The ultimate goal of trusted interoperation of heterogeneous databases is for mul-
tiple applications to share multiple data sources while maintaining security of the
data sources. There are two aspects to sharing of data sources:

e Multiple applications sharing the same data source.

o Multiple data sources accessed by the same application.
In addition, there are two aspects to maintaining security of data sources:

e Security. Any access or information flow denied within a component
database must also be denied under trusted interoperation.

e Autonomy. Any access or information flow permitted within a component
database must also be permitted under trusted interoperation.

Previous work on semantic interoperation [12, 15] has demonstrated the viabil-
ity of a mediated approach to the sharing of data sources. In a mediated system,
applications can employ different languages and schemas, and databases can be
managed by different database management systems (DBMSs). A mediator has
knowledge about different languages and data models, and the relationships be-
tween them. When an application issues a query in one language and data model,
the mediator transforms the query into other languages and data models using
its knowledge, thus enabling the application to access multiple databases without
having to know multiple languages and data models.

In the mediation approach described in this report, the objects of mediation
are queries. Query mediation is a natural approach for the following reasons:

6

e Queries form the basic unit of interaction between a user (or application)
and a data source.

e Queries have a high degree of logical abstraction, and hence are well-suited
to automated interoperation techniques.

With queries as the objects of mediation, expressing relationships between differ-
ent data sources or between a data source and an application becomes a matter of
specifying how one or more queries in one source (or application) can be answered
by one or more queries in another source.

The mediation approach applies equally well under ¢rusted semantic interoper-
ation. In a trusted mediated application, queries (implicitly) become the objects
of access control. Using relationships between the security policy of an application
and those of component databases, a mediator is able to determine the queries for
which a user is authorized, while component databases retain responsibility for
enforcing access control over local data. As discussed later, this approach satisfies
both the security and autonomy requirements of trusted interoperation.

Chapter 3

Mediation Architecture

As observed in [11], the sharing of data among multiple sources and applica-
tions does not necessarily require the sharing of system components. This is
certainly true of the mediated approach, where data sharing is viewed primarily
as a problem of semantically meaningful data communication [12. 15]. In a trusted
environment of data sharing, there is the additional requirement that this data
communication respect the security policies of component databases.

3.1 Components

A mediator for semantic interoperation of autonomous heterogeneous databases
consists of the following components:

e Mediation language. Communication between autonomous heteroge-
neous databases is carried out in a mediation language or interlingua. This
type of language differs from the representation languages (data models) of
participating databases. A representation language captures the knowledge
about data for the appropriate abstraction and efficient representation of
one class of applications, while a mediation language captures the knowl-
edge about data for meaningful and efficient communication among many

classes of applications.

e Knowledge base. Semantically meaningful communication between het-
erogeneous databases is based on the relationships between participating
databases. These relationships capture the commonalities and mismatches

8

in semantics and representations between the databases. They are expressed
in the mediation language and form a knowledge base.

Query transformer. A mediation language alone is not sufficient to en-
sure meaningful communication among heterogeneous databases, because
the databases can contain data that mismatch in semantics and representa-
tions. A query transformer mediates the communication among databases
by resolving potential mismatches. Equipped with the knowledge base of re-
lationships between participating databases, the query transformer accepts
queries from one database (or application), determines which databases con-
tain relevant data, generates queries to those databases, and mediates the
resulting data back to the originator of the query. Mediation is carried out
in the mediation language.

Translators. In most cases the query languages and data models of partic-
ipating databases will differ from the mediation language. For each differ-
ent database query language/data model, a translator is needed to convert
queries and data between the database language and the mediation language.

Wrappers. Participating databases are wrapped by interface modules that
perform the following functions: forwarding queries from a data source to
a mediator, forwarding queries from a mediator to the wrapped DBMS,
and receiving answers back from a query sent to a mediator. Thus, the
wrapper provides communication facilities between a mediator and a data
source. Wrappers are largely invisible to users and require little, if any,
modification to the interfaces of participating databases.

A trusted mediation system includes the following additional components:

Security policies. Just as the mediator needs knowledge about the repre-
sentational and semantic relationships between databases, the mediator also
requires knowledge of commonalities and mismatches between security poli-
cies of participating databases. In a trusted mediation system, relationships -
between security policies become additional parts of the knowledge base.

Security translators. To enable participating databases to enforce their
respective security policies, security translators convert security constraints
between the mediator’s representation and those of the sources. Each wrap-
per for a trusted data source employs a security policy translator to map

9

between its policy representation and that of the mediator. The mediator
also employs security policy translation as part of the query transformer.
These uses of security policy translation are discussed in more detail in

Chapter 6.

Each of the components listed thus far is a run-time component of the me-
diation architecture, used during the process of mediating queries. A complete
mediation architecture must also include a compile-time component, which is used
in the construction and maintenance of a mediated information system:

e Knowledge base editor. With the run-time components in place, the
most difficult task in the construction of a mediated application is the spec-
ification of relationships between the various data sources. A knowledge base
editor provides tools to aid in the construction of the knowledge base. In a
trusted mediation system, the knowledge base editor must include a secu-
rity policy editor for specifying relationships between the security policies of
participating databases and identifying potential mismatches between the
policies.

Figure 3.1 shows the mediation architecture as reflected in the prototype me-
diation system. The figure shows three autonomous heterogeneous databases in-
teroperating within a mediated application. The components in this system are
described in more detail in Chapter 6, while the application and its demonstration
are described in the appendix.

3.2 Query Mediation

Suppose that a user, operating at clearance level C, issues query) to the mediated
application via the “HTML Interface” in Figure 3.1. The mediation of query @

would proceed as follows:

1. Query @ is passed from the HTML Interface into a translator that converts
@, expressed in HTML, into @', expressed in the mediation language.

2. From query @' (with clearance C'), the Query Transformer uses the Knowl-
edge Base to determine a mediated query Q},. In general, @}, may be a set
of queries targeted to sources A, B, and C. Each query in @', remains at
clearance level C.

10

Knowledge Base

Security policy

= HTMLICG Interface |<——

Schemas

Relationships

Integrator/Administrator

Figure 3.1: Mediation architecture.

11

I Translator] [T\
Py ¥------- I Application User
'l Query Transformer | Wrapper A
: Resource usage/Access control : Communication
| 1 ——
: ‘ : Policy translator DB A
¥ ¢
. Global Query-PI'an : Transiator
1| Generator/Optimizer || Wrapper B
1 I
! ‘ | Communication
! N -1 DB B
1 Local Query Plan 1 Policy translator
i !
' Generator ;
1
N * : Wrapper C
Query Dispatcher : Communication
ad Translator |-
Result Processor - Policy translator b8 ¢

. Mediated query @, is passed to the Global Query Plan Generator, which
computes an evaluation plan P for the component queries of Q},. Suppose
that @), consists of three queries, @, @, and Q. Plan P determines
where the queries will be sent and in what order.

. Plan P is passed to the Local Query Plan Generator, which uses knowledge
of the sources’ query processing capabilities and constraints to convert the
queries in P into forms suitable for the sources. The resulting plan P’

contains queries Q%, Q%, and QF.

. Plan P’ is sent to the Query Dispatcher, which sends @’ and Q% to the
common translator for sources A and B, and sends Q7 to the translator for

source C.

. Queries @Q’, Q%, and Q7% are translated, respectively, into Qa, @5, and

Q¢, which are then forwarded, respectively, to Wrapper A, Wrapper B, and
Y

Wrapper C.

. Wrapper A translates clearance level C into clearance level Cy4 for source A,
forwards Q4 to source A at clearance level Cjy, resulting in data D4, which
is passed back to the translator. Wrappers B and C do likewise for Qp and

Qc, respectively.

. Answers Dy, Dpg, and D¢ are translated back into the mediation language,
resulting in answers D/, D%, and D;, which are then forwarded to the

Result Processor.

. The Result Processor combines answers D,, D5, and Dy, and forwards the
result, D, back to the user.

12

Chapter 4

Semantic Mediation

At a high level, query mediation can be viewed as a three-phase process:

e Mapping. The first phase is the compile-time process of determining map-
pings between

1. each source-dependent language and a source-independent language
(the mediation language), and
2. queries of one source and those of another source or application.
e Matching. The second phase is the run-time process of determining how a

user (or application) query can be answered by available sources, resulting
in mediated queries.

e Translating. The third phase is the run-time activity of converting queries
from the mediation language into source-specific languages.

4.1 Mediation Language

Central to semantic query mediation is the mediation language. The two principal
concerns in the choice of the mediation language are

o Expressiveness. The mediation language should be powerful enough to
capture the semantics of all data sources participating in a mediated system
so that meaningful relationships between the sources can be described.

13

e Efficiency. All the core activities of a mediator are carried out in the
mediation language. It is important, therefore, that the language allow for
efficient computation.

With these criteria in mind, we have chosen an efficient fragment of first-order logic
as the mediation language. This language is essentially an extension of Datalog
[20] that preserves both the efficiency and completeness properties of Datalog.
Although this language is particularly well suited to mediation among relational
systems, it is also suitable for systems employing object query languages [16], such
as XSQL [9], and for semistructured information sources.

4.2 Transformation

The key activity in query mediation is query transformation, which determines
how a user’s query can be answered using available data sources. The result of
query transformation is a mediated query. There are two important requirements
in computing mediated queries:

e Correctness. A mediated query should return only information relevant
to the user’s original query. This implies that there should be containment

[21] of the mediated query by the original query.

e Completeness. A mediated query should return as much relevant infor-
mation as possible from participating databases.

In a collection of autonomous heterogeneous data sources, two other considerations
arise:

e Partial information. In general, a single database may not have a com-
plete answer for a user’s query. For example, a query might ask for data
on all patients, both inpatients and outpatients, but a clinic database may
contain data only on outpatients.

e Multiple sources. In a heterogeneous environment, many sources may
contribute partial information in the answer to a query. For example, one
source may contain information on cardiology patients, while another main-
tains data on oncology patients.

14

In general, a mediated query is a collection of individual queries to sources con-
taining relevant data. Each query in the collection may refer to a single source
or to multiple sources. Based on the requirements and considerations for medi-
ated queries, the answer to a mediated query is the union of all answers (whether
partial or complete) from sources containing relevant data.

The transformation of a user/application query into a mediated query is ac-
complished by a technique known as query folding. A description of query folding
(with examples) in the context of the prototype is provided in Section 6.4. A
complete treatment of query folding is presented elsewhere [13].

4.3 Model-Free Optimization

The query folding technique handles the large and common class of queries known
as project-select-join (PSJ) queries, also known as conjunctive queries. It is well
known that the containment problem (that is, whether one query yields a subset
of the answers of another) for conjunctive queries is computationally intractable
(NP-complete) [2]. At present, this result is generally believed to imply that
any algorithm for solving the containment problem must be exponential in the
sizes of the queries involved. Query folding is a generalization of the containment
problem. For a given query and set of resources, query folding computes a set of
queries, each of which is guaranteed to be contained in the original query. Hence,
query folding must be at least as computationally complex as the containment
problem [13]. Nevertheless, there are several ways in which the cost of producing
a complete answer to a query over a collection of heterogeneous databases can be
reduced.

4.3.1 Folding Algorithms

Various algorithms for query folding, or answering queries using views, have been
described in the literature [3, 4, 10, 17, 19]. Each of the algorithms addresses a
different aspect of the folding problem, but they have in common the purpose of
computing only foldings that are equivalent to the original query. Thus, they are
not well suited to a heterogeneous environment, where partial information can
be useful. Moreover, these algorithms use exhaustive search strategies that are
more complex than necessary. To try to regain efficiency, some algorithms prune
the search space, sacrificing completeness. Although any complete algorithm for

15

generating (possibly partial) foldings must be exponential in the worst case, it
is possible to do much better than exhaustive search. Furthermore, there is a
large class of commonly occurring queries for which folding can be performed in
polynomial time. In particular, we have developed the following techniques for
optimizing the query transformation process:

e Query folding for conjunctive (PSJ) queries. This algorithm gener-
ates a complete set of foldings (a mediated query) directly from a user’s
query and the set of data source relationships from the mediator’s knowl-
edge base. Unlike previously proposed algorithms that generate a superset
of foldings that must subsequently be filtered, our algorithm is able to detect
mismatches as soon as they appear, enabling much more efficient generation
of mediated queries. Although the algorithm remains exponential in the
‘worst case, this algorithm can be considered efficient, in that exponential
behavior is inherent to the problem, and yet extraneous foldings are not

generated.

e Query folding for acyclic PSJ queries. This algorithm is a special case
of the general algorithm for the commonly occurring class of acyclic queries.
The algorithm retains all the advantages of the general algorithm, and has
the additional advantage of working in polynomial time for acyclic queries.

e Query folding for PSJ queries with comparisons. Comparisons (such
as “Age < 55”) are among the most commonly used selection conditions
in PSJ queries. In the general case, it is believed that the most efficient
algorithms for containment of such queries must be doubly exponential [22],
holding out little hope for efficient folding of such queries. However, the
class of queries with comparisons used most often in practice can be folded
with the same efficiency as PSJ queries without comparisons.

e Query folding for PSJ queries with integrity constraints. We have
developed algorithms for folding of conjunctive queries with functional de-
pendencies and queries with referential integrity constraints. When such
integrity constraints are known to hold on participating databases, these
folding algorithms may be able to generate foldings that otherwise would
have been overlooked. These additional foldings can yield additional in-
formation from sources containing relevant data. As with the basic query
folding algorithm, the algorithms for folding with integrity constraints are
exponential time in the worst case.

16

4.3.2 Query Minimization

While the query folding algorithms are correct and complete, each individual
query in the mediated set is not necessarily in optimal form. Specifically, query
folding may generate queries with redundant literals (which represent references
to tables in the relational model). Hence, we further optimize the output of
query transformation by eliminating redundant references in mediated queries,
minimizing their model-independent representation. This minimization results in
more efficient source-specific queries at query evaluation time.

4.3.3 Most General Queries

In addition to redundant literals within queries, the folding algorithms may also
generate redundant queries. For a query to be considered redundant, it must be
contained in another query in the mediated set. Since redundant queries yield
no additional data from participating databases, they should be eliminated. This
is done by checking each folding, after it is generated, against the set of foldings
already produced. If it is not contained in one of the foldings already produced,
it is kept. If it contains one of the foldings already produced, the contained query
is discarded. Otherwise, the query itself is contained in one of the others and
is discarded. The end result is the set of most general queries. It represents
the smallest set of queries that yield complete information from participating
databases. An interesting open problem is how to perform query folding so that
only most general foldings are generated from the outset.

4.4 Translation

The final phase of semantic mediation is the translation of queries from the medi-
ation language into the appropriate source-specific query language. This process
is straightforward for relational languages. For object query languages, the trans-
lation process is documented elsewhere [16]. The translation of HTML queries, as
required in the prototype mediator, is discussed in Section 6.3.

17

Chapter 5

Security Mediation

While semantic interoperation techniques are concerned with optimizing media-
tion and maximizing the amount of relevant information extracted, security me-
diation techniques focus on ensuring that information is made available only to
authorized users. As noted in Chapter 2, there are two guiding principles in the
trusted interoperation of autonomous heterogeneous databases:

e Principle of security. Any access denied in a component database must
also be denied under trusted interoperation. In other words, the security of
a database must not be compromised by its participation in an integrated
information system.

e Principle of autonomy. Any access permitted in a component database
must also be permitted under trusted interoperation. In particular, a com-
ponent database should not have to alter its security policy as a prerequisite
to participation in a mediated system.

A solution to trusted interoperation that adheres to both the security and auton-
omy principles is security mediation. By analogy with semantic interoperation,
security mediation works as follows:

1. The security policy of each participating database is mapped to that of a

mediated application or another source, and these mappings, or security
relationships, are maintained in the mediator’s knowledge base.

2. Using the security relationships in the knowledge base, the query transformer
determines the set of mediated queries for which the issuer of the query has

adequate clearance.

18

5.1 Access Control

A key design decision that must be made in security mediation is the positioning
of access control within the mediation architecture (Figure 3.1). We identify three
distinct points where access control can be enforced:

e User interface. In principle, access control could be enforced solely at the
user interface. However, the kind of access control that could be enforced
at the interface would be either too weak (checking the user’s authorization
only at login time) or too strong (authorizing or rejecting queries in their
entirety). Hence, we eliminate this possibility from further consideration.

o Mediator. Access control is enforced solely at the mediator for all partici-
pating data sources.

e Wrappers. Access control is enforced by each data source independently.

To evaluate the relative merits of mediator-based access control and wrapper-
based access control, we consider the following criteria:

e Policy management. How easy or difficult is it to maintain a consis-
tent security policy in the mediated system? How easy or difficult is it to
integrate an additional data source into an existing mediated system?

e Assurance. How easy or difficult is it to achieve high assurance in a trusted
mediation system?

e Autonomy. Is the autonomy of participating databases respected?

Enforcing access control at the mediator is advantageous from the standpoint
of policy management, presuming that the mediator begins with a consistent view
of the security polices of participating sources, since it is relatively straightforward
to define policy mappings between a new source and the mediator. On the other
hand, autonomy of participating sources is lost. Moreover, high assurance may
be difficult or impossible to achieve, since enforcement of access control in the
mediator brings the mediator into the trusted computing base (TCB).

Enforcing access control at the wrappers is advantageous from the standpoint
of autonomy — sources maintain complete autonomy. It may also be advantageous
in terms of assurance, since little mediator functionality must be brought into the
TCB. On the other hand, policy management may be more difficult, particularly

19

if there is no global security policy in the mediated system: consistency must be
ensured between all pairs of sources. For the same reason, integration of new
sources becomes complicated.

5.1.1 A Hybrid Approach

A reasonable solution to the problem of positioning access control is a hybrid
of mediator-based and wrapper-based access control. In the hybrid approach,
participating databases maintain and enforce their own local policies, while the
mediator maintains and enforces a global policy. This hybrid approach preserves
the autonomy of sources and enables relative ease of integration of new sources.
Ease of achieving high assurance is unclear, but the hybrid approach is clearly
superior to the mediator-based in this respect, while it is similar in assurance
to the wrapper-based approach. Based on these findings, we adopt the hybrid
approach to access control in our mediation architecture.

5.2 Security Translation

We have developed techniques for security mediation that

1. assist in defining consistent mappings between security policies of data
sources, and

2. use these mappings to translate security constraints from the policy of one
source or application into the policy of another.

This section describes the translation technique. The technique for defining secu-
rity policy mappings, the security policy editor, is described in Section 6.9.2. The
techniques described in this report focus on mandatory access control (MAC)
policies in multilevel secure (MLS) databases, since databases of this type are
used in the prototype system. However, these techniques can be readily adapted
to other types of policies, such as discretionary access control (DAC) policies in
system-high databases.

5.2.1 Translation of MAC Policies

In a secure mediated application, each authorized user logs in at a specific clear-
ance level. Each query issued by the user inherits this clearance level when it

20

is sent to the mediator. The same level is also assigned to each query resulting
from query transformation (Section4.2). When a resulting single-source query
is issued to a data source, the source’s wrapper translates the clearance level
assigned to the query at the mediator into the level appropriate for the source.
Thus, while the core components of the mediator are concerned with retrieving
the maximum amount of relevant information, security policy translation in each
source’s wrapper ensures that only information for which the user is cleared is
returned.

The portion of a data source’s security policy relevant to query mediation is
the set of security levels used by the source, and the dominance relation between
them. The security levels and dominance relation together form a security lattice
[5]. Relationships between the security policy of a mediated application and the
policies of the sources are represented by cross-lattice dominance mappings.

Figure 5.1 shows hypothetical cross-lattice dominance relationships between
the security lattice of a mediated application and those of two participating
sources. Source A uses a simple four-element security lattice, with low and high
levels represented by Pub (public) and Prv (private), respectively. There are
also two (incomparable) intermediate levels, Pat (patient) and Pro (provider),
intended to model the classification of patient-sensitive and provider-sensitive in-
formation, respectively. Source B uses a similar lattice, with intermediate levels
Acc (accounting) and Ins (insurers), intended to model the classification of inter-
nal accounting information and external insurer information, respectively. In the
mediated application, Acc dominates Pat, while Ins dominates both Pat and
Pro. Dashed arrows indicate cross-lattice dominance relationships.

5.2.2 Sample Translation

As an illustration of how the security policy translation is used, consider a query
issued in the mediated application at a clearance level of Acc. Suppose that
there is information relevant to this query in both sources (A and B). There is no
direct counterpart to level Acc in Source A. However, level Acc in the mediator
dominates level Pat, which does have a direct counterpart (Pat) in Source A.
Hence, the query to Source A is issued at clearance level Pat. On the other hand,
Source B does have a direct counterpart to Acc, and the query to Source B is
issued at level Acc.

Now, consider a query issued in the mediator at level Ins. Again, Source A has
no direct counterpart to Ins, but there are two levels in the mediator, Pat and

21

Source A : Mediator : Source B

Prv Prv

Ins

Pat
Pub

Pub § Pub

Figure 5.1: Cross-lattice dominance relationships.

Pro, dominated by Ins, with corresponding labels in Source A. Hence, a query
from the mediator at level Ins is issued twice to Source A, once at level Pat,
and once at level Pro. In general, the following translation procedure determines
the level(s) at which a query from the mediator to a source must be issued at
the source. Let L denote the clearance level of the query at the mediator. Let
{L},..., L.}, n > 0, denote the set of mazimal (in the dominance order) levels
at the source that are dominated by L. Then, the set of clearance levels at which
the query must be issued at the source is {L},..., L} }.

5.3 Translation Consistency

To avoid compromising the security of any source, cross-lattice dominance rela-
tionships must be consistent [7]. In viewing the cross-lattice diagram as a directed
graph, the dominance relationships are said to be consistent if there are no cycles
in the graph involving at least one arc of a component lattice. The relationships
represented in Figure 5.1 are consistent. Figure 5.2 represents an inconsistent
cross-lattice dominance relationship. Level Pub in Source B dominates level Ins
in the mediator, while level Pro in the mediator dominates level Prv in Source B.
As a result, level Pub has been effectively equated with level Prv in Source B.
Consider a mediated environment in which a query is issued from Source B at level
Pub to the mediator. At the mediator, the query has clearance level Ins. The
resulting mediated query back to Source B is issued at level Pro, which translates

22

Mediator ‘ Source B

Prv

Ins

-
LR
-

Figure 5.2: Inconsistent dominance relationship.

to Prv at Source B, giving the original query (issued at the lowest clearance level)
access to data at all levels.

The violation depicted in Figure 5.2 is easily seen. In general, however, secu-
rity violations resulting from cross-lattice dominance mappings may arise in subtle
ways not readily apparent to the administrator/integrator who defines the map-
pings. For this reason it is important to provide the integrator with automated
support for identifying and removing security violations. In the prototype system
this functionality is provided in a security policy editor (Section 6.9.2). Using the
security policy editor, an integrator effectively resolves potential security policy
mismatches at integration time (compile time), enabling automated and efficient
policy translation at run time.

5.3.1 Integrated Security Policies

In Figure 5.1, levels in the security policy of the mediated application have close
counterparts in the sources, and the cross-lattice dominance relationships indicate
equivalence between identically named levels. However, such equivalence is not
a requirement for security policy translation. Although in this example the me-
diator’s lattice was derived from those of the sources, this need not be the case
in general. All that is required is that a semantically meaningful and consistent
mapping be made between the security lattice of the mediator and that of each
of the sources.

23

Chapter 6

Prototype Mediation System

The algorithms and techniques described earlier in this report have been imple-
mented and integrated into a prototype mediation system. The principal compo-
nents of the mediation architecture are outlined in Chapter 3. Here we describe
the components in more detail in the context of a demonstration application!.

Figure 3.1 in Chapter 3 illustrates the architecture of the prototype system
as applied to an information system that integrates three data sources from the
health-care and medical research domains. Two of the sources are MLS relational
databases containing (actual) data from two units of a health care network. These
two units are referred to by the fictitious names “Metropolitan Hospital” and
“Valley Clinic”. The third source is the well-known Medline medical research
citations database. Medline was developed and is maintained by the National
Library of Medicine and is accessible via the World Wide Web. The application
as a whole is referred to as MEDINFO. The MEDINFO application can be viewed
as a virtual database. It has a schema, a query language and data model, and a
security policy, but it has no data of its own. The data are supplied by information
sources participating in the mediated system.

In Figure 3.1, the components within the dashed box are generic and consti-
tute the core of the mediator. The wrappers on the right side of the figure are
source-specific, although they contain some generic interfacing functionality. The
knowledge base and translators can be viewed as components that tie together
the core mediator components and the wrapped data sources.

1The demonstration itself is described in.the appendix to this report.

24

6.1 Overview of Mediation

Before describing the prototype components in more detail, we briefly review the
query mediation process. At a high level, the mediation process consists of the
following steps:

1.

Translate a user’s application query from the query language of the appli-
cation (e.g., HTML) into the mediation language.

Transform the application query (now expressed in the mediation language)
into (possibly multiple) target database queries (still in mediator language).

Remove any target database queries for which the user has insufficient clear-
ance (access control optimization).

Generate and optimize a global execution plan for target queries.

Generate local query plans for target queries.

. Execute query planss.

(a) Translate target queries from mediator language to database language.

(b) Issue target queries on databases. Wrappers at database determine
appropriate clearance level for queries by invoking the security policy
translator. '

(c) Perform query processing tasks not handled by databases.

7. Process results and return answers to user query.

The user interface simply provides a means for a user to issue queries in terms
of the application schema and to view the answers to that query provided by the
mediator. In the demonstration application, the user enters SQL queries into a
simple HTML forms interface and views results formatted as HTML tables.

6.2 HTML/CGI Interface

The HTML/CGI interface provides a graphical interface (via a Web browser) to
the mediated application. The user logs in at a certain clearance level and then
may query the system via fill-out forms. A CGI (Common Gateway Interface)
script recasts the HTML query in SQL and forwards it to a translator.

25

6.3 Query Translation

The first stage in the mediation process is the translation of an application query
into the mediation language. In the prototype system, an application query is
expressed (after being recast from HTML) in a subset of SQL (restricted to con-
junctive, or select-project-join queries). After translation into the mediation lan-
guage, the user’s query is forwarded to the query transformer, which is the primary
module of the mediator core.

Translation is also used in a later stage of mediation, during the execution of
queries generated by the mediator from an application query. Here the queries
must be translated from the mediation language into the query language of the
target database. Of the three databases mediated by the demonstration system,
two (hospital and medical center) are Trusted Oracle databases, which use SQL
as the query language. The third (Medline) uses HTML as its query language.
Thus, the prototype system includes modules for translating between the media-
tion language and SQL and for translating between the mediation language and
Medline’s HTML encoding. Normally, Medline is accessed via a Web browser by
filling out an HTML form. Access to Medline from the mediator is achieved by
generating an HTML query that is equivalent to the query generated by the form
interface. Thus, Medline remains truly autonomous — its interface need not be
modified to enable access from the mediator. Indeed, Medline would be unable to
distinguish mediator accesses from Web browser accesses.

6.4 Query Transformation

The query transformer attempts to rewrite a given query, formulated in terms
of the application schema, into one or more queries that can be answered by
one or more participating databases. As discussed in Section 4.2, the technique
to accomplish this rewriting is known as query folding. Using descriptions of
the relationships between application and target database schemas, query folding
rewrites a query on the application schema into a set of queries on one or more
database schemas, if possible. Each query in the resulting set of transformed
queries is guaranteed to yield a subset of the answers to the original query. Fur-
thermore, the set of transformed queries produced by query folding is complete,
in the sense that the set will yield the maximum amount of information (from the
participating databases) relevant to the original query.

26

6.4.1 Application/Resource Relationships

The relationships between application and resource schemas are described in a
general form that relates application queries to resource queries. This means that
a relationship description may establish a correspondence between an arbitrary
join of relations in the application schema and an arbitrary join of relations in a
resource schema. In other words, relationships between application relations and
resource relations are many-to-many. The relationship descriptions are created by
a person with knowledge of both the application and the database resource with
which it is related. Once created, the descriptions are stored in the knowledge
base (Section 6.9) for use in the transformation process described in Section 6.4.2.

Figure 6.1 summarizes the relationships between the MEDINFO application
schema and the three database sources. The relationships are expressed by rules
of the general form

application _query > resource_query

where application_query and resource_query are essentially bodies of Datalog
queries formulated in terms of the application and resource schemas, respectively.
These rules can be understood as “the query application_query in the applica-
tion schema corresponds to the query resource_query in the resource schema (for
some particular resource)”. Such a rule means that resource.query provides some
answers for application_query. In Figure 6.1, the relationships are shown in an
abstract form in which the attributes of the relations have been omitted. For ex-
ample, the first rule in Figure 6.1 states that a query on the relation Metro.Patients
in the hospital database provides answers for a query on relations Patient and Pa-
tient_private in the application. Examples of fully detailed relationships are given
in Figure 6.2, where rules are given that relate patient data from two resources to
the application.

6.4.2 Resource Usage

Using the resource descriptions stored in the knowledge base, query folding at-
tempts to rewrite a given application query (expressed in the mediation language)
into queries on available database resources. The folding process involves finding
a suitable resource replacement for each literal in the body of the application
query. If such replacements can be found, and if the conjunction of the replace-
ment literals is consistent with the semantics of the original query, the rewritten

27

Application

patient, patient_private
patient

physician

physician, physician_specialty
event

event, visit

research

research
research

tTtTt11t1

T1

Resource

metro.patients

valley.patients

metro.physicians

valley.providers

metro.events, metro.physicians
valley.providers, valley.events
medline.publication, medline.author,
medline.keyword

metro.events, metro.physicians
valley.providers, valley.events

Figure 6.1: Summary of MEDINFO application and resource relationships.

patient(Id, Ln, Fn, Adr, Dob, Ms, Sez), patient_private(Id, Ssn, Race) <=
metro.patients(Id, Ln, Fn, Adr, Ssn, Dob, Ms, Sez, Race)

patient(Id, Ln, Fn, Adr, Dob, Ms, Sez) <
valley.patients(Id, Ln, Fn, Adr, Dob, Ms, Sex)

Figure 6.2: Detail of Patient relationships.

28

query is called a complete folding, or, simply, a folding of the original query. The
folding algorithm used in the prototype mediation system is guaranteed to find all
complete foldings of a given application query. This means that the mediator will
extract from the participating databases the maximum number of answers for the
query. The examples below illustrate the basic concepts underlying query folding.

Consider the following simple query on the (virtual) relation Patient in the
MEDINFO application:

SELECT last_name, first_name FROM Patient.

After translation into the mediation language, the query becomes
ql(Ln, Fn) :— patient(Id, Ln, Fn, Adr, Dob, Ms, Sez).

Examining the resource descriptions in Figure 6.2, we see that there appear to be
two resources, metro.patients and valley.patients, that may serve as replacements
for the patient literal in the body of ¢Z. Indeed, the folding algorithm yields the
following two foldings for the query, one for each resource:

qla(Ln, Fn) :— metro.patients(Id, Ln, Fn, Adr, Ssn, Dob, Ms, Sez, Race)
q1b(Ln, Fn) :— valley.patients(Id, Ln, Fn, Adr, Dob, Ms, Ser).

Note that foldings need not have such a simple correspondence between the
query and individual resources. Consider the following extension of the query
from the example above:

SELECT last_name, first_name, race
FROM Patient, Patient_private
WHERE Patient.id = Patient_private.id

with translation into the mediation language

q2(Ln, Fn, Race) -~ patient(Id, Ln, Fn, Adr, Dob, Ms, Ser),
patient_private(Id, Ssn, Race).

This query requests the attribute Race from the logical relation Patient_private.
Examining the resources in Figure 6.2, we see that this additional information
is maintained in the hospital database in relation metro.patients, but the medi-
cal center database has no corresponding information. Nevertheless, if the two

29

databases contain some common patient information, the information missing
from valley.patients might be filled in by metro.patients. This possibility is re-
- flected in the queries produced by the folding algorithm: :

q2a(Ln, Fn, Race) :—
metro.patients(Id, Ln, Fn, Adr, Ssn, Dob, Ms, Sez, Race)
q2b(Ln, Fn, Race) :—
valley.patients(Id, Ln, Fn, Adr, Dob, Ms, Sex),
metro.patients(Id0, Ln0, Fn0, Adr0, Ssn0, Dob0, Ms0, Sex0, Race),
Id = Id0.

In the first folding (query g2a) the relation metro.patients alone is used to provide
answers for ¢2. The second folding (query ¢2b) will attempt to supply answers
through a join of metro.patients with valley.patients. Based on the resource de-
scriptions, queries g2a and ¢2b are the only foldings that may provide answers to
query ¢2. Examples of more complex foldings can be found in the appendix.

6.4.3 Access Control

In a trusted mediated application, the set of queries yielded by query folding gen-
erally represents a superset of the queries that the user is authorized to issue.
Recall from Section 5.1 that the mediator employs a hybrid approach to access
control in which the mediator enforces a global policy, while individual sources
retain responsibility for access control locally. This implies that, even if the me-
diator allows the full set of queries to proceed to the sources, the security of the
sources will not be violated. Nevertheless, there remain two important reasons
for exercising access control in the mediator:

e Optimization. If the mediator eliminates, in advance, all mediated queries
for which the user has insufficient clearance, mediation becomes more ef-
ficient, since queries that would have been rejected at sources do not go
through the remaining stages (plan generation, translation, and communi-
cation to wrappers) of the mediation process.

e Systems with no local access control. Access control in the mediator
can also be used as a means of enforcing an access control policy for sources
(such as legacy databases) that do not provide local access control. Of

30

course, for this form of access control to be effective, there must not be
alternative means of accessing such soufces, which, in turn, implies a loss of
autonomy of the sources.

6.5 Global Query Plan

If query transformation is successful, we have a set of queries to be issued to
one or more databases. Some of the queries may be answerable completely by
one database. For example, queries qla, g1b, and ¢2a (from Section 6.4.2) are
all single-database queries. Others may involve multiple databases, for example,
query g2b, which involves both the hospital database and the medical center
databases. Individual queries involving multiple databases must be broken downm,
or decomposed, into subqueries that can be answered by individual databases.
Some portions of a query may not be answerable by any database source. Such
portions include joins between subqueries on different sources and the evaluation
of selection conditions not supported by a source. These parts of the query must
then be evaluated by the mediator.

The details of how the set of transformed queries will be evaluated are repre-
sented in a global query plan. The global plan specifies the order of evaluation of
individual queries in the set, how the individual queries are broken down, if nec-
essary, into subqueries, and what processing remains to be done by the mediator.

6.5.1 Generation

A query plan consists of a sequence of subplans. Each subplan is made up of a
group of query plans that can (in principle) be executed in parallel. Each query
plan in a group initially represents the evaluation of one query from the set of
queries produced by the transformation stage. In general, a query plan for any
such query may in turn be made up of a sequence of subplans, since, as already
mentioned, the query may need to be decomposed into smaller, single-source or
mediator-evaluated queries.

In principle, all the queries produced in the transformation stage can be evalu-
ated in parallel, since each query is independent of the others. In practice, the abil-
ity to evaluate the queries in parallel depends on the capabilities of the database
resources (since several queries may need to be issued to the same database source)
and the communication, storage, and processing resources available to the media-

31

Query Query Query
Plan 1 Plan 2 Plan 3

Source Query 1)
Mediator

Processing

Source Query 2

Figure 6.3: Sample global query plan structure.

tor. In the prototype system, the degree of actual parallel evaluation is determined
at the plan execution stage (query dispatch and result processing). Hence, the
global plan is generated to represent the maximum amount of parallelism possible
in principle. This implies that the global plan will consist of a single group of
query plans, one for each query in the transformed set.

Figure 6.3 depicts the structure of a sample global query plan for three queries.
Each box represents a query plan. Plans grouped together within a box may be
evaluated in parallel, while plans connected by an arrow represent a sequence of
plan executions. For example, query plan 2 within the global plan consists of
a sequence of two subplans. The diagram for the first subplan in the sequence
denotes a group of two plans for single-source queries that may be evaluated in
parallel. The second subplan in the sequence represents mediator processing that
requires the results from the two single-source queries.

Generation of an evaluation plan for each query in the transformed set involves

the following steps:

1. Identification of the database source for each literal in the body of the query.

32

2. Decomposition of the query into single-source queries.
3. Formulation of a query for mediator processing, if necessary.

The following example illustrates these steps. Consider the transformed query ¢2b
from Section 6.4.2:

q2b(Ln, Fn, Race) —
valley.patients(Id, Ln, Fn, Adr, Dob, Ms, Sez),
metro.patients(1d0, Ln0, Fn0, Adr0, Ssn0, Dob0, Ms0, Sez0, Race),
Id = Id0.

Using resource information maintained in the mediator’s knowledge base, the plan
generator identifies the first literal in the query as a reference to the medical center
database, while the second literal refers to the hospital database. The final literal,
Id = Id0, expresses a join condition between relations from different databases
and must be evaluated by the mediator. Thus, the query is decomposed into the
following two single-source queries:

q2b1(Id, Ln, Fn, Adr, Dob, Ms, Sez) :—
valley.patients(Id, Ln, Fn, Adr, Dob, Ms, Sex)

q2b2(1d0, Ln0, Fn0, Adr0, Ssn0, Dob0, Ms0, Sex0, Race) :—
metro.patients(1d0, Ln0, Fn0, Adr0, Ssn0, Dob0, Ms0, Sez0, Race)

and a mediator-evaluated query to perform the join and return answers to the
original query:

q2b3(Ln, Fn, Race) :—
q2b1(Id, Ln, Fn, Adr, Dob, Ms, Sez),
q2b2(Id0, Ln0, Fn0, Adr0, Ssn0, Dob0, Ms0, Sez0, Race),
Id = Id0.

Queries ¢2b1 and ¢2b2 may be evaluated in parallel, while the evaluation of ¢2b3

must wait for the evaluation of ¢2b1 and ¢2b2 to complete. Notice that the plan
for query ¢2b thus corresponds to query plan 2 from Figure 6.3.

33

6.5.2 Optimization

When a mediator system incorporates databases distributed over a wide area
(e.g., the Internet), a major factor in the cost of mediation is the amount of
network traffic between the mediator and databases. If the global query plan
is generated naively, its execution may result in queries on individual databases
that yield much more data, and hence result in much more network traffic, than
necessary. In the prototype system, optimizatidns are performed that eliminate
two principal sources of unnecessary network traffic, both of which result from the
decomposition of multiple-source queries into single-source queries.

6.5.2.1 Projection

The decomposition of query ¢2b in Section 6.5.1 resulted in two queries, each of -
which returns an entire table from its respective database. It it clear that not
all the information from those relations is needed to answer query g2b. In the
prototype system a simple optimization is performed on decomposed queries so
that only the data for necessary attributes is retrieved. A necessary attribute is
one that is part of the projection (occurs in the head of the query) or participates
in a join or selection condition. With this optimization the two single-source
queries resulting from the decomposition of ¢2b become

q2b1(Id, Ln, Fn) -—
valley.patients(Id, Ln, Fn, Adr, Dob, Ms, Sez)
q2b2(1d0, Race) :—
metro.patients(1d0, Ln0, Fn0, Adr0, Ssn0, Dob0, Ms0, Sez0, Race)

since Ln, Fn, and Race are the projected attributes, while Id and Id0 are involved
in a join.

6.5.2.2 Cross Product Elimination

Since communication with the database resources constitutes much of the cost of
mediation, it might seem that the best decomposition of a multiple-source query
is one that minimizes the number of single-source queries produced; that is, after
decomposition, there is at most one query for any one database. However, there
are often cases in which further decomposition improves execution of the query

34

plan. For example, consider the following multiple-source query:

q3a(Name, Rank) :—
metro.physicians(Id, Name, Adr, Lic),
metro.role(Evld0, Prld0),
metro.events(Patldl, Visldl, Evldl),
valley.patients(Patld2, Ln, Fn, Adr, Dob, Ms, Sez),
valley.providers(PrId1, Namel, Licl, Rank),
Id = PrId0, Evld0 = Fvld1,
Patldl = Patld2, Lic = Licl

which is one of the queries produced by transformation of an application query
that requests the names and ranks of all care providers involved in treatment
events. Decomposing the query to minimize the number of single-source queries
results in the following set:

q3al(Id, Name, Lic, Patldl) :—
metro.physicians(Id, Name, Adr, Lic),
metro.role(EvId0, PrId0),
metro.events(Patldl, Visldl, Evld1),
Id = Prld0, Evld0 = Evldl

q3a2(Patld2, Licl, Rank) -—
valley.patients(Patld2, Ln, Fn, Adr, Dob, Ms, Sez),
valley.providers(PrlId1, Namel, Licl, Rank)

q3a3(Name, Rank) :—
q3al1(Id, Name, Lic, Patld1),
q3a2(Patld2, Licl, Rank),
Patldl = Patld2, Lic = Licl

Notice that query ¢3a2 has no join between valley.patients and valley.providers,
and thus represents the cross product of the two relations. However, query q3a
involves no cross product, because the two relations in question are joined with

35

relations from another database. After decomposition, these joins are computed
by the mediator query ¢3a8. The cross product in ¢%a2 is simply a result of
decomposing the multiple-source query ¢3a.

The cross product query suffers from two major drawbacks. First, the target
database (in this case, medical center) must compute the cross product, which
may involve considerable time and significant processing resources at the database.
Second, the cross product (which in general will be quite large) must be communi-
cated back to the mediator, stored, and processed again. Since query g3a involves
no cross product to begin with, the overhead of the cross product query can be
avoided by decomposing query ¢3a2 and reformulating query ¢2a3, as follows:

q3a2a(Patld2) :— valley.patients(Patld2, Ln, Fn, Adr, Dob, Ms, Sez)
q8a2b(Licl, Rank) :— valley.providers(Prld1, Namel, Licl, Rank)

q8a8(Name, Rank) :— ¢3al1(Id, Name, Lic, Patldl),
q3a2a(Patld?2),
q3a2b(Licl, Rank),
Patldl = Patld2, Lic = Licl

Now, query ¢2a2 has been replaced by queries ¢2a2a and ¢2a2b, which simply
retrieve parts of the individual relations referenced in ¢2a2, and ¢2a8 computes
the join of these relations with the result of ¢2al (which remains unchanged).

6.6 Local Query Plan

In a heterogeneous environment, not all databases will necessarily have the same
query evaluation capabilities. For example, some databases may not be able to
evaluate certain built-in predicates (e.g., arithmetic comparisons) supported by
other databases or by the application. In addition, some databases may have
certain constraints on how queries may be formulated; for example, an attribute
may be required to have a value supplied in the query (input only), or may not
permit a value to be supplied in the query (output only).

In the demonstration system, the Medline text retrieval system has constraints
on the forms of queries that may be issued. For example, document searches in
Medline must be restricted to particular ranges of dates, such as 1979 < year <
1984, but no other uses of inequality operators are permitted. In addition, Medline
can search for documents based on keyword, but does not return keywords in the

36

search result. Thus, keyword is used as an input-only attribute. On the other
hand, Medline provides descriptive text for documents retrieved in a search, but
does not allow search based on such text, so that this descriptive text is effectively
an output-only attribute.

To ensure that individual source queries can be evaluated, a local query plan
is generated for each such query in the global plan. Each local query plan can
be viewed as a refinement of a source query node in the global plan. In the
simplest case, the capabilities of the source are sufficient, the query meets the
requirements of the source, and hence no refinement is needed. When the query
contains (built-in) predicates not evaluable by the source, the query must be
decomposed into a query evaluable by the source (if possible) and the remainder
that must be processed by the mediator. If the local plan generator determines
that the (possibly decomposed) query does not meet the constraints of the source,
the mediator can avoid sending the query to the source and instead supply a null
answer to the query.

Note that, after local query plan generation, no local query optimization is
attempted. Local query plans represent queries entirely answerable by a single
database source, and thus optimization of the queries is left to the respective
databases.

6.7 Plan Execution

The final stage in the mediation process is the execution of the global query plan
and, in turn, the local query plans that constitute the global plan. As the system
architecture diagram (Figure 3.1) shows, the plan execution component of the
mediator consists of two subcomponents: (1) a query dispatcher and (2) a result
Processor.

6.7.1 Query Dispatcher

As its name suggests, the query dispatcher is responsible for issuing the individual
queries contained in the global query plan to the appropriate database sources or
to the mediator’s internal query processor. The order of evaluation is specified in
the global plan, and the query dispatcher may issue the queries in any manner
that satisfies that order. In particular, queries that are grouped together in the
plan for parallel evaluation may be evaluated in any arbitrary order, subject to

37

the constraints of the database sources (for multiple simultaneous connections)
and the mediator’s own internal resources. In the demonstration prototype, the
dispatcher issues grouped queries in an arbitrary sequential order.

Before any database query can be issued, it must be translated from the me-
diation language into the database’s query language. Using information supplied
in each local query plan, the dispatcher identifies the appropriate translator and
calls it. The dispatcher then sends the translated query to the source specified in
the plan. In the case of a mediator query, no translation is required, and it is sent
directly to the mediator’s internal query processor.

6.7.2 Result Processor

The result processor is responsible for combining the answers returned from
database sources and formatting the processed answers for return to the user
(the issuer of the original application query). The processing necessary for com-
bining the answers to individual database queries is specified by the query plan in
the form of mediator queries. Recall that this processing includes computing joins
of relations from different databases as well as the evaluation of built-ins that the
query processors of some databases may not handle. Thus, the mediator contains
a query processor capable of evaluating select-project-join queries.

For return of the results to the application user, the mediator can be configured
in either of two ways. In one configuration, the result processor computes the
union of all answers to the application query and returns them as a single set.
In the alternate configuration, the mediator returns the answers to each query
in the set produced by query transformation (folding) separately, along with an
indication of the source(s) of the information.

6.8 Wrappers

Each database incorporated into a mediated system must have a wrapper module
with which it communicates with the mediator. The purpose of a wrapper is to
accept queries from the mediator, forward these queries to the query processor
of the database, accept answers back from the database, and return these results
back to the mediator. In a trusted environment, a wrapper must also provide
a security policy translator to ensure consistent and meaningful use of security

38

information in the mediation process. The translation process is described in
Section 5.2.

6.9 Knowledge Base

The knowledge base component maintains information regarding schemas and
security policies of participating databases and the relationships between the ap-
plication and each of the participating databases. The query transformer, the
query language/data model translators, and the security policy translators all
rely on information maintained in the knowledge base. Thus, the knowledge base
is central to the mediator. Population of the knowledge base with meaningful
and consistent knowledge of the sources and their relationships to the application
is critical to the construction of a successful mediated application. In a sense,
an instance of the mediation architecture with an empty knowledge base can be
viewed as a mediator “template” or “framework”, which upon construction of the
knowledge base becomes a mediator.

6.9.1 Knowledge Base Editor

The knowledge base is populated and maintained by an administrator interacting
with the knowledge base editor. The main activities supported by a knowledge
base editor are

e Description of source schemas, language constraints, and representation
structures.

e Specification of relationships between source schemas, in the form of map-
pings that relate queries answerable by one source to queries answerable by
another source or application.

6.9.2 Security Policy Editor

In addition to the knowledge required for semantic mediation, the knowledge
base contains information on security policies and their relationships for trusted
interoperation. A security policy editor is provided that enables the administrator
to perform the following security-related activities:

e Description of security policies of the mediated application and data sources.

39

e Specification of mappings between the security policy of one source and that
of another source or application.

e Identification and resolution of potential security violations that may result
from interoperation.

Perhaps the most important function of the security policy editor is the
identification of potential security violations. The editor allows the integra-
tor/administrator to specify security relationships one by one. After the addition
of each relationship, the editor determines whether the added relationship would
permit a security violation. If so, all relationships involved in the potential viola-
tion are identified, and the administrator must remove one or more relationships
until the violation is corrected. Only then is the addition of new relationships

permitted.

6.10 Adding Databases to a Mediated System

In the mediation architecture, incorporating a new database source into a medi-
ated application involves the following activities:

e Creating a wrapper module for the database.

Creating a translator to translate between the the mediation language and
the database language (if such a translator does not already exist).

Providing descriptions of the schema. of the database, and describing the
relationships between the application schema and the database schema.

Describing the security policy of the database and the relationships between
the security policy of the application and that of the database.

Note that, to add a new database, one needs to be familiar only with the applica-
tion and the database to be added. There is no need for the complex task of schema
integration. Nevertheless, the mediation architecture supports a federated-style
interoperation approach, where the knowledge base of the mediated application
(a virtual federated database) would contain the integrated schema. '

40

6.11 Implementation Summary

The core mediator components, as well as the translators and wrappers, are im-
plemented in ANSI C. The translators are modules that can either be operated
as stand-alone programs or be linked directly with the core mediator components.
Each wrapper is a stand-alone program that is called as needed by the mediator.
The mediator itself runs as a single Unix process, and each database query issued
by the mediator is managed by a subprocess of the mediator that calls the appro-
priate wrapper program. Communication between any wrapper process and its .
parent process is carried out using POSIX standard pipes to maximize portability
of the mediator system. A limited amount of scripting code (e.g., Perl) is used to
interface certain stand-alone components and for CGI processing.

The two relational sources are Trusted Oracle databases maintained on a
Trusted Solaris platform. The Medline database is maintained separately (by
the National Library of Medicine) and made available via the Internet.

41

Chapter 7
Conclusion

In the research program described in this report, we investigated the problems
that arise in trusted semantic interoperation, developed a core set of techniques
that address those problems, and implemented and integrated these techniques in
a prototype trusted query mediation system. Realistically, this work should be
viewed as a significant step toward a general solution to the problem of trusted
interoperation of COTS and legacy databases. Although the technology is not yet
sufficiently developed to enable ready application of trusted mediation techniques
to real systems, it is now at a stage where further development can and should be
guided by the needs of real-world information system applications.

7.1 Further Work

We identify here several issues that must be addressed to enable real-world applica-
tion of trusted mediation technology. These issues are divided into two categories:
(1) short- to medium-term needs, which includes pressing needs as well as require-
ments that could be satisfied with the level of technology currently available, and
(2) longer-term goals, where the amount of effort required is large and/or more
fundamental research into the technological issues is required. Note that the lists
of needs and requirements should not be considered exhaustive.

42

7.1.1 Short- to Medium-Term Requirements

Translators

We currently have translators for a subset of SQL and for a particular form
of HTML queries. The translation between SQL and the mediation should be
extended to cover SQL more completely. Many of the required tasks here are
straightforward, for example, adding the capability to handle more built-in func-
tions and predicates. Other aspects, such as aggregation, subqueries, and union
queries will require considerable research.

For object query languages, the research is already in place, and the develop-
ment of translators should be relatively straightforward.

For HTML queries, the approach we have taken is fairly general, although our
process for generating a translator for an HTML-based application is completely
manual. Given the proliferation of Web-based information sources, automating
the generation of translators between HTML and the mediation language is worth
pursuing.

For other languages and legacy systems, the development of translators can
be addressed as required.

Integration Tools

Perhaps the most critical requirement for effective application of trusted media-
tion technology is the development of graphical tools for automated integration
support. As discussed earlier, the successful development of a mediated applica-
tion depends critically on the population of a knowledge base of schemas, security
policies, and relationships.

Knowledge Base Management

Currently, the mediator’s knowledge base is maintained as a collection of struc-
tured text files. While this is suitable for small applications, it is unlikely to scale
well. A more efficient and robust means for storing the knowledge base should be
developed, perhaps using available COTS systems. Note that the development of
integration tools is closely tied to the design of the knowledge base.

43

Wrappers

The implementation of a database wrapper is relatively straightforward, and gen-
erally they can be produced as needed. Many of the wrappers functions are
common across database systems. Thus, the development of a wrapper generator

would be desirable.

7.1.2 Longer-Term Issues
Mediator Core

In the longer term, and in particular for large-scale mediated applications, work
on making the core mediator components more robust and more capable will have
to be done. The core functions of the mediator fall broadly into two categories:

1. Query transformation capabilities
2. Query processing capabilities

As the mediation language is a substantial fragment of first-order logic, query
transformation is essentially a problem of logical inference in first-order logic. At
the same time, the expressiveness of the mediation language requires that the
mediator have the full query processing power of a relational database system.
Recent advances in the area of deductive database technology make it possible to
consider blending query transformation with query processing. With the addition
of disk-resident data processing capabilities, it will become possible to implement
a mediator core as a deductive database application.

Push/Pull

The techniques we have developed focus exclusively on the problem of guery-
ing heterogeneous information sources. No attention has been given (in the cur-
rent project) to the problem of updates in a trusted heterogeneous environment.
Progress in this area will require much research into fundamental problems. It
should be noted that work in data warehousing is likely to yield useful results in
this area.

44

Bibliography

1]

R. J. Brachman. The future of knowledge representation. In Proceedings of
the Eighth National Conference on Artificial Intelligence, pages 1082-1092,
1990.

A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational databases. In Proceedings of the Ninth Annual ACM
Symposium on the Theory of Computing, pages 77-90, 1977.

S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing
queries with materialized views. In Proceedings of the Eleventh International
Conference on Data Engineering, pages 190-200, 1995.

C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In
Sizth International Conference on Database Theory (ICDT ’97), volume 1186
of Lecture Notes in Computer Science, pages 56—70. Springer-Verlag, 1997.

D. E. Denning. A lattice model of secure information flow. Communications
of the ACM, 19(5):236-243, May 1976.

M. L. Ginsberg. Knowledge Interchange Format: The KIF of death. AJ
Magazine, 12(3):57-63, 1991.

L. Gong and X. Qian. Computational issues in secure interoperation. JEEE
Transactions on Software Engineering, 22(1):43-52, January 1996.

W. Kent. Solving domain mismatch and schema mismatch problems with

an object-oriented database programming language. In Proceedings of the
Seventeenth International Conference on Very Large Data Bases, 1991.

45

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 393-402, 1992.

A.Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries
using views. In Proceedings of the Fourteenth ACM Symposium on Principles
of Database Systems, pages 95-104, 1995.

R. Neches, R. E. Fikes, T. Finin, T. Gruber, R. S. Patil, T. Senator, and
W. R. Swartout. Enabling technology for knowledge sharing. Al Magazine,
12(3):36-56, 1991.

X. Qian. Semantic interoperation via intelligent mediation. In Proceedings of
the Third International Workshop on Research Issues in Data Engineering:
Interoperability in Multidatabase Systems, pages 228-231, April 1993.

X. Qian. Query folding. In Proceedings of the Twelfth International Confer-
ence on Data Engineering, pages 48-55, 1996.

X. Qian and T. F. Lunt. Tuple-level vs. element-levél classification. In
Database Security VI: Status and Prospects, pages 301-315. North-Holland,
1993.

X. Qian and T. F. Lunt. Semantic interoperation: A query mediation ap-
proach. Technical Report SRI-CSL-94-02, Computer Science Laboratory, SRI
International, April 1994.

X. Qian and L. Raschid. Query interoperation among object-oriented and
relational databases. In Proceedings of the Eleventh International Conference
on Data Engineering, pages 271-278, March 1995.

A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using tem-
plates with binding patterns. In Proceedings of the Fourteenth ACM Sympo-
sium on Principles of Database Systems, pages 105-112, 1995.

A. Sheth and V. Kashyap. So far (schematically) yet so near (semantically).
In Proceedings of the IFIP TC2/WG2.6 Conference on Semantics of Inter-
operable Database Systems. Elsevier Scientific Publishers, November 1992.

46

[19] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The GMAP: A ver-
satile tool for physical data independence. In Proceedings of the Twentieth
International Conference on Very Large Data Bases, pages 367-378, 1994.

[20] J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1.
Computer Science Press, 1988.

[21] J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 2.
Computer Science Press, 1988.

[22] R. van der Meyden. The complexity of querying indefinite data about lin-
early ordered domains. In Proceedings of the Eleventh ACM Symposium on
Principles of Database Systems, pages 331-345, 1992.

47

Appendix A

System Demonstration Report

"This appendix describes the demonstration of trusted mediation technology as
applied to an information integration problem in the health-care and medical
information domains. We begin by describing the application scenario. We then
briefly review the system architecture and mediation process. Finally, we describe
the demonstration in detail. A detailed account of the research program that
produced the demonstration appears in the main text of this report.

A.1 Application Scenario

The application is a medical information system referred to as “MEDINFO”.
This application is designed to model a hypothetical integration of separately
maintained health-care databases and a Web-based medical citations system into
a mediated information system. Specifically, the goal is to create a mediated
application that

e Integrates the three sources
e Respects the autonomy of the sources
e Preserves the security of the sources.

While MEDINFO has its own schema and security policy, it has no data of
its own, and thus can be viewed as a virtual database. The data for MEDINFO
is provided by a collection of three data sources, each with its own schema, se-
mantics, security policy, and query language. Two of the sources are multilevel

A-1

Application
(virtual database)

|
Y

Mediator
=3 > <l
£
Metropolitan Hospital Valley Clinic Medline

Figure A.1: MEDINFO application.

secure (MLS) relational databases containing actual data from a health-care sys-
tem, modeled here as a hospital and a clinic. In this report, the hospital and
clinic are referred to by the fictitious names “Metropolitan Hospital” and “Valley
Clinic”, respectively, and their respective databases are referred to as the hospital
and clinic databases. Both hospital and clinic databases use Trusted Oracle as
the trusted database management system. The third source is the Medline med-
ical research citations system. Unlike the hospital and medical center databases,
Medline is an semistructured text source, normally accessed on the World Wide
Web (WWW) via a Hypertext Markup Language (HTML) forms interface.

The three sources are linked to the application (virtual database) via a media-
tor. Figure A.1 is a high-level view of the demonstration system. The user issues a
query to the application interface, which then forwards the query to the mediator.
The mediator determines whether and how the query may be answered based on
its knowledge of the relationships between the application and the participating
databases. The mediator then issues queries to each and all of the databases capa-
ble of supplying information to answer the application query. Upon receiving the

A-2

requested information from the databases, the mediator combines the information
appropriately and returns the results to the application interface for presentation
to the user.

A.2 Integration and Mediation

Figure A.2 provides a more detailed view of the prototype system. At a high level,
the mediation process consists of the following steps:

1. Translate a user’s application query from the query language of the appli-
cation (e.g., HTML) into the mediation language. ‘

9. Transform the application query (now expressed in the mediation language)
into (possibly multiple) target database queries (still in mediator language).

3. Remove any target database queries for which the user has insufficient clear-
ance (access control optimization).

4. Generate and optimize a global execution plan for target queries.
5. Generate local query plans for target queries.
6. Execute query plans.

(a) Translate target queries from mediator language to database language.

(b) Issue target queries on databases. Wrappers at database determine
appropriate clearance level for queries by invoking the security policy
translator.

(c) Perform query processing tasks not handled by databases.
7. Process results and return answers to user query.

The key to constructing a trusted mediated application based on the architec-
ture depicted in Figure A.2 is the specification of semantic and security relation-
ships, which are stored in the knowledge base and used by the query transformer,
language translators, and security policy translators for mediating queries.

A-3

———={ HTML/CGl Intertace |=—»

=

Y
| Transiator | ===\
Knowledge Base f—— T $-------] Application User
.| Query Transformer | Wrapper A
i I .
ecuri olic 1| Resource usage/Access control | Communication
S typ y ! : : | DB A
:’ ‘ X / Policy translator
] 1
Schemas , Global Query.PI-an : F— Transiator
| Generator/Optimizer | Wrapper B
I]
Relationships : i : \ Communication .
i .
[I, Local Query Plan : Policy translator
Selia Alneie 41 Generator !
i
1| K.B. N ; ! Wrapper C
, | Editor Query Dispatcher . Communication
Py e PR Transtator |- -
¥ ! Result Processor [, oo Policy translator DB C
Ve e I oo T——————1 !
2220202
Integrator/Administrator
Figure A.2: System architecture.

Application Resource

patient, patient_private "> metro.patients
patient < wvalley.patients
physician <+ metro.physicians
physician, physician_specialty <« wvalley.providers
event < metro.events, metro.physicians
event, visit <« wvalley.providers, valley.events
research <+ medline.publication, medline.author,
medline.keyword
research > metro.events, metro.physicians
research < walley.providers, valley.events

Figure A.3: Sample semantic relationships.

A.2.1 Semantic Relationships

Semantic relationships are logical rules that establish correspondences between
queries answerable by a source and queries answerable by the application. Fig-
ure A.3 gives an abstract view of some of the relationships used in the application.
For example, the first rule means that a query on the relation Metro.Patients in the
hospital database can provide answers to a query on the two (virtual) application
relations Patient and Patient_private, while the second rule means that relation
Valley.Patients in the clinic database can provide answers only to queries on the

application relation Patient.

A.2.2 Security Relationships

The application and the two relational sources both enforce mandatory access
control (MAC) control policies, while Medline is publicly available and enforces
no access control policy. Security relationships are modeled as cross-lattice dom-
inance relationships between the security lattices of the application and sources.
Figure A.4 depicts these lattices and relationships as used in MEDINFO.

The hospital database (Metro) uses a simple security lattice with three levels:
ADM, MED, and PER. Level ADM (Administrator) is the highest clearance
level at which a user may operate in the hospital database, and is used to protect
the most sensitive data in the database. Level MED (Medical) is an intermediate

A-5

Metro Application Valley

M'ED DU CLi~._ AN~ ,/cu\)\ls
PER ~---------------- PER----------- - Pﬂo\y/ms
| PAT
}
PUB
Medline

Figure A.4: Security relationships.

clearance/sensitivity level used to label clinical data. The lowest level is PER
(Personal), used to label personal data pertaining to patients and employees.

The clinic database (Valley) uses a more elaborate security policy. The highest
level is ACC (Accounting). The next two lower levels (which are incomparable)
are CLI (Clinical) and Insurance, intended to label clinical and insurance-related
data, respectively. Level CLI/INS reflects the need to label some data for access
by both CLI- and INS-cleared users. Level PRO (Provider) labels provider-
sensitive data, and the lowest level PAT (Patient) labels patient-sensitive data.

The application uses a security policy of intermediate complexity. The top level
is ADM (Administrative), with lower levels CLI (Clinical) and FIN (Financial),
having intuitive meanings. The lowest level is PER (Personal). The dashed
arrows in the figure represent cross-lattice dominance relationships. For example,
a user operating at clearance level ADM in the application has access to all data
in all databases, since ADM in the application dominates the highest levels in
both the hospital and the clinic databases (as well as the sole label PUB (Public)
in Medline). Similarly, CLI in the application dominates MED in the hospital
database and CLI in the clinic database. Level FIN in the application dominates
INS in the clinic database, but has no direct counterpart in the hospital database.

A-6

A user operating at clearance level FIN may access data labeled at INS and below
in the clinic ‘database and data labeled at PER in the hospital database, since
FIN dominates PER in the application, and PER in the application dominates
PER in the hospital database. Finally, PER in the application dominates PUB
in Medline, which allows users operating at any clearance level full access to
Medline.

A.3 System Demonstration

The prototype system is available on the Web to authorized users for demon-
stration purposes. The system should function well with any reasonably recent
graphical Web browser. This section provides guidance on how to use the pro-
totype system to demonstrate its most important aspects. Partial screen dumps
that illustrate the demonstration are provided at the end of this appendix.

A.3.1 Connecting to the System

The first step is to connect to the system by pointing a Web browser to the
following URL:

http://www.csl.sri.com/~dawson/mediator/main.html

which results in display of the system’s home page (Figure A.5).

A.3.2 Logging In

The user logs in to the system at one of the four clearance levels shown in Fig-
ure A.5: Administrative, Clinical, Financial, or Personal. These levels correspond
to the clearance levels for the application depicted in Figure A.4. The system
prompts for a username and password to complete the login process. Figure A6
shows the result of an Administrative-level login.

A.3.3 Selecting an Information Category

For each clearance level there is an associated collection of information categories
from which the user can choose. The greatest variety of information is available to
an Administrative user (Figure A.6). All other levels have access to some subset
of these categories.

A-7

A.3.4 A Simple Query

For a simple test of the system. a query for patient information works well. Fig-
ure A.7 shows the query form for patient information. The format for other query
forms is similar. Information (attributes) to be returned are selected on the left
side of the form. Selection conditions (restrictions on the query) are specified by
filling in boxes on the right side. Figure A.8 shows the result of selecting the ID
number, last name, first name, and date of birth for all patients in the system.

A.3.5 The Log File

While most features of the prototype can be demonstrated simply by querying
the system, it is also useful to see what goes on “behind the scene”. The mediator
generates a log file that details its activities as it mediates queries. The log file
for a query is available upon return of the query results via a hyperlink, labeled
“View log file”, that appears at the end of the results.

A.3.5.1 Interpreting the Log File

The log file for the simple patient query (Section A.3.4) appears in Section A.5.1.
An entry is made in the log file at each major step in the mediation process:

1. SQL query. The SQL query is the user’s original query generated by
the HTML/CGI form interface and formulated in terms of the application

schema.

2. Logic (mediator) query. This query is the translation of the user’s query
into the mediation language.

3. Foldings. The foldings are the initial result of the query transformation
phase. The original query is rewritten into one or more queries to sources
containing information relevant to the user’s query.

4. Cleared foldings. The initial set of foldings may include some queries for
which the user has insufficient clearance. Although the sources enforce their
own local access control policies, the query transformer can optimize the
mediation process by removing queries for which the user is not cleared.

A-8

5. Query plan. The query plan, as displayed in the log file, is the final output
of the query evaluation planning phase. Each node in the plan contains a
query that will be issued to one of the three sources (identified by source ID

~ and type) or a query that represents processing that must be performed by
the mediator (indicated by type “MEDIATOR”).

6. Plan execution. As the plan is executed, queries are dispatched to the appro-
priate sources. For each query, the result of label translation (performed by
the wrappers) is displayed. For example, a query at clearance level “ADM”
in the application, when targeted to the hospital database, is issued at level
“C ADM1”. Similarly, a query targeted to the clinic database is issued at
level “C ACC2”. Following the clearance level, the type of the source (TOR-
ACLE or MEDLINE) is given, along with the translation of the query into
the language of the source.

A.4 Additional Demonstration Queries

A.4.1 Access Control

The user logs in at level Administrative! and requests information from category
Benefit Information. The user wishes to see the names, insurance payors, and
policy numbers for all patients in the system, and selects attributes Last name,
First name, Payor, and Policy No. The result consists of 575 rows.

Next, the user logs in at level Financial, proceeds to the Benefit Information
section, and issues the same query. In this case, only 236 rows are returned,
because benefit-related data is labeled at level ADM in the hospital database,
while corresponding data in the clinic database is labeled at level INS. Recall
from Section A.2.2 that level FIN translates to PER in the hospital database.
Hence, no information from the hospital database is returned.

A.4.2 All Sources with Access Control

The user logs in at level Clinical or Administrative, and proceeds to category
Research Data to find research-related information on hemodialysis. The user

1The browser’s “Back” button can be used to revisit earlier pages in the demonstration. It
is not necessary to return to the home page, except when logging in at a different level.

A9

selects all attributes and specifies the keyword “hemodialysis” (keywords are case-
insensitive). The result consists of 17 rows. Ten of the rows are medical citations
from Medline. Five of the rows are from the hospital database and show the
names of physicians and patients involved in treatment events for hemodialysis.
Two similar rows are returned from the clinic database.

Next, the user logs in at level Personal, proceeds to the Research Data area,
and issues the same query. Now only the 10 rows from Medline are returned, since
research information from the hospital and clinic databases pertains to clinical
information for which the user has insufficient clearance. The log file shows how
the mediator optimizes evaluation of this query by removing the queries that
would have been rejected by the hospital and clinic databases.

A.4.3 Complex Mediation

The user logs in at level Clinical or Administrative, and proceeds to the Treatment
Event category. The user wishes to see the names, treatment events, and providers
of a certain range of patients. The user selects attributes “Last name”, “First
name”, “Event description”, and “Provider name”, and specifies a range of 120000
to 125000 for Patient ID2. The interesting aspect of this query is the complexity
of its mediation. Numerous complex foldings are generated for the query, and the
query plan is also quite involved.

A.4.4 Other Queries

The queries discussed in this section demonstrate most of the important features
of the mediator, but many other queries are possible, and experimentation with
the system is encouraged.

2An unrestricted query can be issued here, but it may take several minutes to evaluate.

A-10

Medical Informa;t}ifﬁfﬁ;n Mediator:

Figure A.5: Prototype system home page.

A-11

Administrative Area

.entwi"ersona\lz“Di’t

» Provider Personal Data

Figure A.6: Administrative user page.

A-12

Patient Info_rm;ati'on

(date format: DD-MMM-YY)

Figure A.7: Patient query form.

A-13

pa_pat_id pa last nm = | pa first nm pa_dob
102431 REDGRAVE MICHAEL 13-JUL-60
1113337 {TAYBACK VIC 28-MAR-29
120990 (CHAPLIN CHARLIE 26—-JUN-14
1121034 DORLEAC ‘FRANCOISE 05-JUL-31
121034 DOUGLAS DONALD 05-JUL-31
89588 HAGEN JEAN 02-MAY-64
159625 ‘MAKEHAM ELIOT 19-MAY-54
89674 POWELL WILLIAM 18-FEB-22
189709 WASHBURN ‘BRYANT 25-MAR-27

Total rows: 300

View log file

Figure A.8: Patient query results.

A-14

A.5 Query Transcripts

A.5.1 Simple Query

SQL query:
select pa_pat_id, pa_last_nm, pa_first_nm, pa_dob from patient

Logic (mediator) query:
q(T1C1,T1C2,T1C3,T1C11) :-
med:patient(T1C1,T1C2,T1C3,T1C4,T1C5,T1C6,T1C7,
T1C8,T1C9,T1C10,T1C11,T1C12,T1C13)

Foldings:
q(IDO,LN1,FN2,DOB10) :-
medl:patient_tablel (IDO,LN1,FN2,MI3,ADR4,CTY5,ST6,
ZIP7,CTR8,SSN9,DOB10,MS11,SEX12,RACE)
q(ID16,LN17,FN18,D0B26) :- med2:patient_table2(ID16,LN17,FN18,
MI19,ADR20,CTY21,ST22,ZIP23,CTR24,SSN25,D0B26 ,M527,SEX28)

Cleared foldings:

q(IDO,LN1,FN2,DOB10) :- medl:patient_tablel(IDO,LN1,FN2,MI3,ADR4,
CTY5,8T6,ZIP7,CTR8,SSN9,D0OB10,MS11,SEX12,RACE)

q(ID16,LN17,FN18,D0B26) :- med2:patient_table2(ID16,LN17,FN18,
MI19,ADR20,CTY21,ST22,ZIP23,CTR24,SSN25,D0B26,MS27,SEX28)

Query plan:

Node list id: 1
Node
Dep. count: 1
Source id: 4, Type: TORACLE
Query: q_1(IDO,LN1,FN2,DOB10) :-
medl:patient_tablel(IDO,LN1,FN2,MI3,ADR4,CTY5,S8T6,ZIP7,
CTR8,SSN9,D0B10,MS11,SEX12,RACE)

A-15

Node list id: 2
Node
Dep. count: 1
Source id: 5, Type: TORACLE
Query: q_2(ID16,LN17,FN18,D0B26) :-
med2:patient_table2(ID16,LN17,FN18,MI19,ADR20,CTY21,
ST22,2I1P23,CTR24,SSN25,D0B26 ,MS27,SEX28)

Plan execution:

C ADM1

TORACLE

SELECT DISTINCT t1.pa_pat_id, tl.pa_last_nm, tl.pa_first_nm,
t1.pa_dob FROM medl.patient_tablel t1l

C ACC2

TORACLE

SELECT DISTINCT ti.pa_pat_id, ti.pa_last_nm, tl.pa_first_nm,
t1l.pa_dob FROM med2.patient_table2 t1

A.5.2 Access Control — Administrative

SQL query:
select pa_last_nm, pa_first_nm, payor, policy_no from benefits,
patient where patient_id = pa_pat_id

Logic (mediator) query:
q(T2C2,T2C3,T1C4,T1CE) :-
med :benefits(T1C1,T1C2,T1C3,T1C4,T1C5,T1C6,T1C7,T1C8),
med:patient(T2C1,T2C2,T2C3,T2C4,T2C5,T2C6,T2C7,T2C8,T2C9,
T2C10,T2C11,T2C12,T2C13),

TiC1 = T2C1

Foldings:

A-16

q(LN157 ,FN158,PAYOR64,POL65) :-
med1:patient_tablel(ID156,LN157 ,FN158,MI159,ADR160,CTY161,
ST162,ZIP163,CTR164,5SN165,D0B166,
MS167,SEX168,RACE) ,
med1:benefit_tablel (PID61,VID63,AID62,PAYID,PAYOR64,POL6S,
DAYS66,RATE67 ,DED68) ,
PID61 = ID156
q(LN173,FN174,PAYOR64,POL65) :-
med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,CTY177,
ST178,2IP179,CTR180,SSN181,D0B182,MS183,
SEX184),
med1:benefit_tablel(PID61,VID63,AID62,PAYID,PAYOR64,POL6S,
DAYS66,RATE67 ,DED68) ,
PID61 = ID172 '
q(LN157 ,FN158,PAYOR72,POL73) :-
med?1:patient_tablel(ID156,LN157 ,FN158,MI159,ADR160,CTY161,
ST162,ZIP163,CTR164,SSN165,D0B166,MS167,
SEX168,RACE) ,
med2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,DAYS74,
RATE75,DED76) ,
med?2:payor_table2(PAYID,PAYOR72),
PID69 = ID156
q(LN173,FN174,PAYOR72,POL73) :-
med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,CTY177,
ST178,ZIP179,CTR180,SSN181,D0B182,
MS183,SEX184),
med2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,DAYS74,
RATE75,DED76) ,
med?2:payor_table2(PAYID,PAYOR72),
PID69 = ID172

Cleared foldings:
q(LN157,FN158,PAYOR64,POL65) :-
med1:patient_tablel1(ID156,LN157 ,FN158,MI159,ADR160,CTY161,
ST162,ZIP163,CTR164,SSN165,D0B166,M5167,
SEX168,RACE) ,

A-17

medl:benefit_tablel (PID61,VID63,AID62,PAYID,PAYOR64,POL65,
DAYS66,RATE67 ,DED68) ,
PID61 = ID156
q(LN173,FN174,PAYOR64,POL65) :-
med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,CTY177,
ST178,Z2I1P179,CTR180,SSN181,D0B182,
MS183,SEX184),
medl:benefit_tablel (PID61,VID63,AID62,PAYID,PAYOR64,POL6S5,
DAYS66,RATE67 ,DED68) ,
PID61 = ID172
q(LN157,FN158,PAYOR72,POL73) :-
medl:patient_tablel(ID156,LN157 ,FN158,MI159,ADR160,CTY161,
ST162,ZIP163,CTR164,SSN165,D0B166 ,MS167,
SEX168,RACE),
med2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,DAYS74,
RATE75,DED76) ,
med2:payor_table2(PAYID,PAYOR72),
PID69 = ID156
q(LN173,FN174 ,PAYOR72,POL73) :-
med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,CTY177,
ST178,Z21P179,CTR180,SSN181,D0B182,
MS183,SEX184),
med2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,DAYS74,
RATE75,DED76),
med2:payor_table2(PAYID,PAYOR72),
PID69 = ID172

Query plan:

Node 1list id: 1
Node
Dep. count: 1
Source id: 4, Type: TORACLE
Query: q_1(LN157,FN158,PAYOR64,POL65) :-
medl:patient_table1(ID156,LN157 ,FN158,MI159,
ADR160,CTY161,ST162,ZIP163,

A-18

CTR164,SSN165,D0B166,MS167,
SEX168,RACE),
medl:benefit_tablel (PID61,VID63,AID62,PAYID,
PAYOR64,POL65,DAYSE6,
: RATE67 ,DED68) ,
PID61 = ID156

Node list id: 2
Node

Dep. count: 1

Source id: 5, Type: TORACLE

Query: mqi (ID172,LN173,FN174) :-

med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,

CTY177,ST178,2IP179,CTR180,
SSN181,D0B182,MS183,SEX184)

Next: 3

Node
Dep. count: 1
Source id: 4, Type: TORACLE
Query: mq2(PID61,PAYOR64,POL65) :-
med1:benefit_tablel(PID61,VIDE3,AID62,PAYID,
PAYOR64,POL65,DAYS6E6,
RATE67 ,DED68)

Next: 3

Node list id: 3
Node ‘

Dep. count: 2

Source id: 0, Type: MEDIATOR

Query: q_2(LN173,FN174,PAYOR64,POL65) :-
mq1(ID172,LN173,FN174),
mq2 (PID61,PAYOR64,POL65) ,
PID61 = ID172

A-19

Node list id: 4
Node

Dep. count: 1

Source id: 4, Type: TORACLE

Query: mg3(ID156,LN157,FN158) :-

medl:patient_tablel(ID156,LN157,FN158,MI159,ADR160,

CTY161,5T162,Z1P163,CTR164,
SSN165,D0B166,MS167,

SEX168,RACE)
Next: 5

Node

Dep. count: 1

Source id: 5, Type: TORACLE

Query: mq4(PID69,POL73,PAYOR72) :-
med2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,

DAYS74 ,RATE75,DED76),

med2:payor_table2(_VO,PAYOR72),
_VO = PAYID

Next: 5

Node list id: 5
Node

Dep. count: 2

Source id: 0, Type: MEDIATOR

Query: q_3(LN157,FN158,PAYOR72,POL73) :-
mq3(ID156,LN157,FN158),
mq4 (PID69,POL73,PAYOR72) ,
PID69 = ID156

Node list id: 6
Node
Dep. count: 1
Source id: 5, Type: TORACLE
Query: q_4(LN173,FN174,PAYOR72,POL73) :-
med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,

A-20

CTY177,ST178,ZIP179,CTR180,
SSN181,D0B182,M5183,SEX184),
med2:benefit_table2(PID69,VID71,AID70,PAYID,PCL73,
DAYS74,RATE75,DED76),
med2:payor_table2(_VO,PAYOR72),
_VO = PAYID, PID69 = ID172

Plan execution:

C ADM1

TORACLE

SELECT DISTINCT t1.pa_last_nm, til.pa_first_nm,
t2.payor_id_desc, t2.policy_number

FROM medl.patient_tablel t1, medl.benefit_tablel t2

WHERE t2.patient_id = tl.pa_pat_id

C ACC2

TORACLE

SELECT DISTINCT tl.pa_pat_id, tl.pa_last_nm, tl.pa_first_nm
FROM med2.patient_table2 ti1

C ADM1

TORACLE

SELECT DISTINCT t1.patient_id, tl1.payor_id_desc, tl.policy_number
FROM medl.benefit_tablel ti1

MEDIATOR

q_2(LN173,FN174,PAYOR64,POL65) :-
mq1(ID172,LN173,FN174),
mq2(PID61,PAYOR64,P0OL65), PID61 = ID172

C ADM1

TORACLE

SELECT DISTINCT ti1.pa_pat_id, ti.pa_last_nm, tl.pa_first_nm
FROM medl.patient_tablel ti

A-21

C ACC2

TORACLE

SELECT DISTINCT t1l.patient_id, t1l.policy_number, t2.payor_id_desc
FROM med2.benefit_table2 t1, med2.payor_table2 t2

WHERE t2.payor_id = til.payor_id

MEDIATOR

q-3(LN157,FN158,PAYOR72,POL73) :-
mg3(ID156,LN157,FN158),
mq4 (PID69,POL73,PAYOR72), PID69 = ID156

C ACC2
TORACLE
SELECT DISTINCT til.pa_last_nm, tl.pa_first_nm,
t3.payor_id_desc, t2.policy_number
FROM med2.patient_table2 tl1, med2.benefit_table2 t2,
med2.payor_table2 t3
WHERE t3.payor_id = t2.payor_id AND t2.patient_id = tl.pa_pat_id

A.5.3 Access Control — Financial

SQL query:
select pa_last_nm, pa_first_nm, payor, policy_no from
benefits, patient where patient_id = pa_pat_id

Logic (mediator) query:
q(T2C2,T2C3,T1C4,T1CS) :-
med:benefits(T1C1,T1C2,T1C3,T1C4,T1C5,T1C6,T1C7,T1C8),
med:patient (T2C1,T2C2,T2C3,T2C4,T2C5,T2C6,T2C7,T2C8,T2C9,
T2C10,T2C11,T2C12,T2C13),
TiC1 = T2C1

Foldings:
q(LN157,FN158,PAYOR64,POL65) :-
medl:patient_tablel (ID156,LN157 ,FN158,MI159,ADR160,CTY161,
ST162,ZIP163,CTR164,SSN165,D0B166,MS167,

A-22

SEX168,RACE),
med1:benefit_tablel(PID61,VID63,AID62,PAYID,PAYOR64,POL6S,

DAYS66 ,RATE67 ,DED68) ,
PID61 = ID156

q(LN173,FN174,PAYOR64,POL65) :-
med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,CTY177,
ST178,ZIP179,CTR180,SSN181,D0B182,
MS183,SEX184),
med1:benefit_tablel(PID61,VID63,AID62,PAYID,PAYOR64,POL6S,

DAYS66 ,RATE67 ,DEDES8) ,
PID61 = ID172

q(LN157,FN158,PAYOR72,POL73) :-

medl:patient_tablel(ID156,LN157,FN158,M1159,ADR160,CTY161,
ST162,ZIP163,CTR164,SSN165,D0B166,M5167,
SEX168,RACE),

med?2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,DAYS74,
RATE75,DED76) ,

med2:payor_table2 (PAYID,PAYOR72),

PID69 = ID156

q(LN173,FN174,PAYOR72,POL73) :-

med2:patient_tableQ(ID172,LN173,FN174,MI175,ADR176,CTY177,
ST178,ZIP179,CTR180,SSN181,D0B182,
MS183,SEX184),

med2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,DAYS74,
RATE75,DED76),

med2:payor_table2(PAYID,PAYOR72),
PID69 = ID172

Cleared foldings:
q(LN157,FN158 ,PAYOR72,POL73) :-
med1:patient_tablel(ID156,LN157 ,FN158,MI159,ADR160,CTY161,
ST162,2IP163,CTR164,SSN165,D0B166,MS167,
SEX168,RACE),
med2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,DAYS74,
RATE75,DED76),

med2:payor_table2(PAYID,PAYOR72),
PID69 = ID156

A-23

q(LN173,FN174,PAYOR72,POL73) :-

med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,CTY177,
ST178,Z1P179,CTR180,SSN181,D0B182,MS183,
SEX184),

med2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,DAYS74,
RATE75,DED76) ,

med2:payor_table2(PAYID,PAYOR72),

PID69 = ID172

Query plan:

Node list id: 1
Node

Dep. count: 1

Source id: 4, Type: TORACLE

Query: mq1(ID156,LN157,FN158) :-

medl:patient_tablel(ID156,LN157,FN158,MI159,ADR160,

CTY161,5ST162,Z1P163,CTR164,
SSN165,D0B166,M5167,

: SEX168,RACE)

Next: 2

Node

Dep. count: 1

Source id: 5, Type: TORACLE

Query: mq2(PID69,POL73,PAYOR72) :-
med2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,

DAYS74,RATE75,DED76) ,

med2:payor_table2(_VO,PAYOR72),
_VO = PAYID

Next: 2

Node list id: 2
Node
Dep. count: 2
Source id: 0, Type: MEDIATOR

A-24

Query: q_1(LN157,FN158,PAYUR72,POL73) 1=
mq1(ID156,LN157,FN1568),
mq2 (PID69,POL73,PAYOR72),
PID69 = ID156

Node list id: 3
Node
Dep. count: 1
Source id: 5, Type: TORACLE
Query: q_2(LN173,FN174,PAYOR72, POL73) :-
med2:patient_table2(ID172,LN173,FN174,MI175, ADR176,
CTY177,ST178,Z2IP179,CTR180,
SSN181,D0OB182,MS183,SEX184),
med2:benefit_table2(PID69,VID71,AID70,PAYID,POL73,
DAYS74,RATE75,DED76) ,
med?2:payor_table2(_VO,PAYOR72),
_VO = PAYID, PID69 = ID172

Plan execution:

C PER1

TORACLE

SELECT DISTINCT t1.pa_pat_id, tl.pa_last_nm, tl.pa_first_nm
FROM medl.patient_tablel t1

% FIN translates to INS and PRO in clinic database. Query issued
Y% at both labels, fails (due to insufficient clearance) at PRO

C INS2

TORACLE

SELECT DISTINCT tl.patient_id, t1.policy_number, t2.payor_id_desc
FROM med2.benefit_table2 tl1, med2.payor_table2 t2

WHERE t2.payor_id = tl.payor_id

C PRO2

TORACLE

SELECT DISTINCT t1.patient_id, t1.policy_number, t2.payor_id_desc

A-25

FROM med2.benefit_table2 t1, med2.payor_table2 t2
WHERE t2.payor_id = t1.payor_id
ORACLE error: ORA-00942: table or view does not exist

MEDIATGCR
q-1(LN157,FN158,PAYOR72,POL73) :-
mql(ID156,LN157 ,FN158),
mq2(PID69,POL73,PAYOR72),

PID69 = ID156

C INS2
TORACLE
SELECT DISTINCT ti.pa_last_nm, tl.pa_first_nm,
t3.payor_id_desc, t2.policy_number
FROM med2.patient_table2 t1, med2.benefit_table2 t2,
med2.payor_table2 t3
WHERE t3.payor_id = t2.payor_id AND t2.patient_id = tl.pa_pat_id
C PRO2
TORACLE
SELECT DISTINCT tl.pa_last_nm, tl.pa_first_nm,
t3.payor_id_desc, t2.policy_number
FROM med2.patient_table2 t1, med2.benefit_table2 t2,
med2.payor_table2 t3
WHERE t3.payor_id = t2.payor_id AND t2.patient_id = tl.pa_pat_id
ORACLE error: ORA-00942: table or view does not exist

A.5.4 All Sources — Clinical

SQL query:
select author, subject, location, date from research
where keyword = ’HEMODIALYSIS’

Logic (mediator) query:

q(T1C1,T1C3,T1C4,T1C5) :-
med:research(T1C1,T1C2,T1C3,T1C4,T1C5),
T1C2 = ’HEMODIALYSIS’

A-26

Foldings:
q(AU129,TL131,JL132,YR133) -
ml:publication(MID,TLlSl,JL132,YR133,M0,DT,PT,LNG),
ml:author (MID,AU129),
ml:keyword(MID,KWlBO), KW130 = ’HEMODIALYSIS’
q(NM134,PLN136,’Metropolitan Hospital’,DATElS?) -
med1:event_tablei(PID,VID,EID,DESC135,DATE137),
medl:patient_tablel(PID,PLN136,PFN,PMI,P5,P6,P7,P8,P9,P10,
P11,P12,P13,P14),
med1:role_tablel(PIDl,VIDl,EID,PRID,RT,RTD),
medl:physician_tablei(PRID,NM134,ADR,CTY,ZIP,LIC),
DESC135 = ’HEMODIALYSIS’
q(NM138,PLN140,’Valley Clinic’,DATE141) :-
med2:event_tab1e2(PID,EID,ADT,DDT,SUBJ,PRID,DATE141),
med2:patient_tab1e2(PID,PLN140,PFN,PMI,P5,P6,P7,P8,P9,
P10,P11,P12,P13),
med2:clinica1_table2(CCS,SUBJ,DESC139,TYPE),
med2:physician_tab1e2(PRID,NM138,ADR,CTY,ZIP,LIC,SC,SR),
DESC139 = ’HEMODIALYSIS’

Cleared foldings:

q(AU129,TL131,JL132,YR133) -
ml:publication(MID,TLiSl,JL132,YR133,M0,DT,PT,LNG),
ml:author (MID,AU129),
ml :keyword (MID,KW130), KWi30 = "HEMODIALYSIS’

q(NM134,PLN136, ’Metropolitan Hospital’ ,DATE137) :-
med1:event_tablei(PID,VID,EID,DESClBS,DATElS?),
medi:patient_tablel(PID,PLN136,PFN,PMI,PS,PG,P?,PS,PQ,PiO,

P11,P12,P13,P14),

medl:role_tablei(PIDl,VIDl,EID,PRID,RT,RTD),
medl:physician_tablel(PRID,NM134,ADR,CTY,ZIP,LIC),
DESC135 = ’HEMODIALYSIS’

q(NM138,PLN140,’Valley Clinic’,DATE141) :-
med2:event_tab1e2(PID,EID,ADT,DDT,SUBJ,PRID,DATE141),
med2:patient_table2(PID,PLN140,PFN,PMI,PS,PG,P?,P8,P9,

A-27

P10,P11,P12,P13),
med2:clinical_table2(CCS,SUBJ,DESC139,TYPE),
med2:physician_table2(PRID,NM138,ADR,CTY,ZIP,LIC,SC,SR),
DESC139 = ’HEMODIALYSIS’

Query plan:

Node list id: 1
Node

Dep. count: 1

Source id: 2, Type: MEDLINE

Query: q_1(AU129,TL131,JL132,YR133) :-
ml:publication(MID,TLiSl,JL132,YR133,M0,DT,PT,LNG),
ml:author(_V0,AU129),
ml:keyword (_V1i,KW130),
_V1 = MID, _VO = MID, KW130 = ’HEMODIALYSIS’

Node list id: 2
Node

Dep. count: 1

Source id: 4, Type: TORACLE

Query: q_2(NM134,PLN136, ’Metropolitan Hospital’,DATE137) :-
med1:event_tablel (PID,VID,EID,DESC135,DATE137),
medl:patient_table1(_VO,PLN136,PFN,PMI,P5,P6,P7,

P8,P9,P10,P11,P12,P13,P14),

medl:role_tablel (PID1,VID1,_V1,PRID,RT,RTD),
medi:physician_tablel(_V2,NM134,6ADR,CTY,ZIP,LIC),
_V2 = PRID, _V1 = EID, _VO = PID,
DESC135 = ’HEMODIALYSIS’

Node list id: 3
Node
Dep. count: 1
Source id: 5, Type: TORACLE

A-28

Query: q_3(NM138,PLN140,’Va11ey Clinic’,DATE141) :-

med2:event_table2(PID,EID,ADT,DDT,SUBJ,PRID,
DATE141),
med2:patient_table2(_VO,PLN140,PFN,PMI,P5,P6,P7,P8,
P9,P10,P11,P12,P13),
med2:clinical_table2(CCS,_V1,DESC139,TYPE),
med2:physician_tableQ(_V2,NM138,ADR,CTY,ZIP,LIC,
SC,SR),

_V2 = PRID, _Vi = SUBJ, _VO = PID,
DESC139 = °*HEMODIALYSIS’

Plan execution:

MEDLINE
/usr/tmp/QD_BAAa15163
Contacting host...
Reading. .
Reading. ..
Reading. ..
Reading. ..
Reading. ..
Reading. ..
Reading. ..
Reading. .
Reading. .
Reading. ..
Reading. ..
Reading. ..
Finished

C MED1
TORACLE
SELECT DISTINCT t4.pr_name, t2.pa_last_nm,
’Metropolitan Hospital’, t1.ev_date
FROM medl.event_tablel t1, medl.patient_tablel t2,
medl.role_tablel t3, medi.physician_tablel t4

A-29

WHERE t4.pr_provider_id = t3.provider_id AND

’ t3.event_id = tl.ev_event_id AND
t2.pa_pat_id = tl.ev_pat_id AND
tl.ev_event_desc = ’HEMODIALYSIS’

C CLI2
TORACLE
SELECT DISTINCT t4.pr_name, t2.pa_last_nm,
’Valley Clinic’, tl.ev_date
FROM med2.event_table2 ti, med2.patient_table2 t2,
med2.clinical_table2 t3, med2.physician_table2 t4
WHERE t4.pr_provider_id = tl.physician_id AND
t3.clinical_code = tl.ev_subjt AND
t2.pa_pat_id = tl.ev_pat_id AND
t3.clinical_code_desc = ’HEMODIALYSIS’

A.5.5 All Sources — Personal

SQL query:
select author, subject, location, date from research
where keyword = ’HEMODIALYSIS’

Logic (mediator) query:
q(T1C1,T1C3,T1C4,T1C5) -
med :research(T1C1,T1C2,T1C3,T1C4,T1C5),
T1C2 = ’HEMODIALYSIS’

Foldings:

q(AU129,TL131,JL132,YR133) :-
ml:publication(MID,TL131,JL132,YR133,MO,DT,PT,LNG),
ml:author (MID,AU129),
ml:keyword (MID,KW130), KW130 = ’HEMODIALYSIS’

q(NM134,PLN136, ’Metropolitan Hospital’,DATElB?) T
medi:event_tablel(PID,VID,EID,DESC135,DATE137),
med1:patient_tablel(PID,PLNISG,PFN,PMI,P5,P6,P7,P8,P9,P10,

P11,P12,P13,P14),

A-30

medl:role_tablel(PID1,VID1,EID,PRID,RT,RTD),
medl:physician_tablel (PRID,NM134,ADR,CTY,ZIP,LIC),
DESC135 = ’HEMODIALYSIS’

q(NM138,PLN140, 'Valley Clinic’,DATE141) :-
med2:event_table2(PID,EID,ADT,DDT,SUBJ,PRID,DATE141),
med2:patient_table2(PID,PLN140,PFN,PMI,P5,P6,P7,P8,P9,

P10,P11,P12,P13),

med2:clinical_table2(CCS,SUBJ,DESC139,TYPE),
med2:physician_table2(PRID,NM138,ADR,CTY,ZIP,LIC,SC,SR),
DESC139 = ’HEMODIALYSIS’

Cleared foldings:

q(AU129,TL131,JL132,YR133) :-
ml:publication(MID,TL131,JL132,YR133,M0,DT,PT,LNG),
ml:author (MID,AU129),
ml:keyword (MID,KW130), KW130 = ’*HEMODIALYSIS’

Query plan:

Node list id: 1
Node

Dep. count: 1

Source id: 2, Type: MEDLINE

Query: q_1(AU129,TL131,JL132,YR133) :-
ml:publication(MID,TL131,JL132,YR133,M0,DT,PT,LNG),
ml:author(_V0,AU129),
ml:keyword(_V1,KW130),
-Vl = MID, _VO = MID, KW130 = ’HEMODIALYSIS’

Plan execution:

MEDLINE
/usr/tmp/QD_BAAa15197
Contacting host...

A-31

Reading...
Reading. ..
Reading. ..
Reading. .

Reading. ..
Reading. ..
Reading. ..
Reading. ..
Reading. ..
Reading. ..
Reading. ..
Reading...
Finished

A.5.6 Complex Query

SQL query:

select pa_last_nm, pa_first_nm, description, name

from event, patient, physician

where patient_id >= 120000 and patient_id <= 125000 and
event.patient_id = pa_pat_id and
event.provider_license = physician.license

Logic (mediator) query:
q(T2C2,T2C3,T1C5,T3C2) :-
med:event (T1C1,T1C2,T1C3,T1C4,T1C5,T1CE),
med:patient(TQCl,T2C2,T2C3,T2C4,T2C5,T2C6,T2C7,T2C8,
T2C9,T2C10,T2C11,T2C12,T2C13) ,
med:physician(T3C1,T3C2,T3C3,T3C4),
T1C3 >= 120000, T1C3 <= 125000, T1C3 = T2C1, T1C6 = T3C4

Foldings:
q(LN157,FN158 ,DESC44,NM342) :-
medl:physician_tablel(ID341,NM342,ADR343,CTY,ZIP,LIC344),
medl:patient_tablel(ID156,LN157,FN158,M1159,ADR160,CTY161,
ST162,ZIP163,CTR164,SSN165,D0B166,M5167,

A-32

SEX168,RACE),
medl:event_tablel(PID42,VID43,EID40,DESC44,DATE41),
medi:role_tablel(PIDl,VIDl,EID40,PRID,RT,RTD),
medl:physician_tablel(PRID,NM,ADR,CTY,ZIP,LIC45),

LIC45 = LIC344, PID42 = ID156, PID42 <= 125000,
PID42 >= 120000

q(LN157,FN158,DESC44,NM346) -

med2:physician_table2(1D345,NM346,ADR347,CTY,ZIP,LIC348,

SC,SR),

medl:patient_tablei(ID156,LN157,FN158,M1159,ADR160,CTY161,
ST162,ZIP163,CTR164,SSN165,DOB166,M5167,
SEX168,RACE),

medl:event_tablel(PID42,VID43,EID40,DESC44,DATE41),

medl:role,tablel(PID1,VID1,EID40,PRID,RT,RTD),

medl5physician_tab1e1(PRID,NM,ADR,CTY,ZIP,LIC45),

LIC45 = LIC348, PID42. = ID156, PID42 <= 125000,

PID42 >= 120000

q(LN173,FN174,DESC44,NM342) i-
medl:physician_tablel(ID341,NM342,ADR343,CTY,ZIP,LIC344),
med2:patient_tableZ(IDl?Q,LN173,FN174,M1175,ADR176,CTY177,

ST178,ZIP179,CTR180,SSN181,D0B182,

MS183,SEX184),
medl:event_tablel(PID42,VID43,EID40,DESC44,DATE41),
medl:role_tablel(PIDl,VIDi,EID40,PRID,RT,RTD),
med1:physician_tablel(PRID,NM,ADR,CTY,ZIP,LIC45),
LIC45 = LIC344, PID42 = ID172, PID42 <= 125000,
PID42 >= 120000

q(LN173,FN174,DESC44,NM346) i-

med2:physician_tab1e2(ID345,NM346,ADR347,CTY,ZIP,LIC348,

SC,SR),

med2:patient_tab1e2(1D172,LN173,FN174,M1175,ADR176,CTY177,
ST178,ZIP179,CTR180,SSN181,D0B182,
MS183,SEX184),

medl:event_tablel(PID42,VID43,EID40,DESC44,DATE41),

medi:role_tablei(PIDi,VID1,EID40,PRID,RT,RTD),

medl:physician_tablel(PRID,NM,ADR,CTY,ZIP,LIC45),

LIC45 = LIC348, PID42 = ID172, PID42 <= 125000, -

A-33

PID42 >= 120000
q(LN157,FN158,DESC49,NM342) :-
medl:physician_tablel(ID341,NM342,ADR343,CTY,ZIP,LIC344),
medi:patient_tablei(ID156,LN157,FN158,MI159,ADR160,CTY161,
ST162,ZIP163,CTR164,SSN165,DDB166,M8167,
SEX168,RACE),
med2:event_tab1e2(PID48,EID46,ADT,DDT,SUBJ,PRID,EDT47),
med2:clinical_table2(CCS,SUBJ,DESC49,TYPE),
med2:physician_table2(PRID,NM,ADR,CTY,ZIP,LICSO,SC,SR),
LIC50 = LIC344, PID48 = ID156, PID48 <= 125000,
PID48 >= 120000
q(LN157 ,FN158,DESC49,NM346) :-
med2:physician_table2(1D345,NM346,ADR347,CTY,ZIP,LICS48,
SC,SR),
medl:patient_tablel(ID156,LN157,FN158, MI159,ADR160,CTY161,
ST162,ZIP163,CTR164,SSN165,D0B166, MS167,
SEX168,RACE),
med2:event_tableZ(PID48,EID46,ADT,DDT,SUBJ,PRID,EDT47),
med2:clinical_table2(CCS,SUBJ,DESC49,TYPE),
med2:physician_tableQ(PRID,NM,ADR,CTY,ZIP,LICSO,SC,SR),
LIC50 = LIC348, PID48 = ID156, PID48 <= 125000,
PID48 >= 120000
q(LN173,FN174,DESC49,NM342) :-
medi:physician_tablel(ID341,NM342,ADR343,CTY,ZIP,LIC344),
med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,CTY177,
ST178,Z2IP179,CTR180,SSN181,D0B182,
MS183,SEX184),
med2:event_tab1e2(PID48,EID46,ADT,DDT,SUBJ,PRID,EDT47),
med2:clinical_table2(CCS,SUBJ,DESC49,TYPE),
med2:physician_tab1e2(PRID,NM,ADR,CTY,ZIP,LICSO,SC,SR),
LIC50 = LIC344, PID48 = ID172, PID48 <= 125000,
PID48 >= 120000
q(LN173,FN174,DESC49,NM346) :-
med2:physician_tableQ(ID345,NM346,ADR347,CTY,ZIP,LIC348,
SC,SR),
med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,CTY177,
ST178,ZIP179,CTR180,SSN181,D0B182,

A-34

MS183,SEX184),
med2:event_table2(PID48,EID46,ADT,DDT,SUBJ,PRID,EDT47),
med2:clinical_table2(CCS,SUBJ,DESC49,TYPE),
med2:physician_table2(PRID,NM,ADR,CTY,ZIP,LICSO,SC,SR),
LIC50 = LIC348, PID48 = ID172, PID48 <= 125000,

PID48 >= 120000

Cleared foldings:
% Identical to Foldings

Query plan:

Node 1list id: 1
Node
Dep. count: 1
Source id: 4, Type: TORACLE
Query: q_l(LN157,FN158,DESC44,NM342) -
med1:physician_table1(ID341,NM342,ADR343,CTY,ZIP,
LIC344),
medl:patient_tablel(IDiSG,LN157,FN158,M1159,ADR160,
CTY161,ST162,Z2IP163,CTR164,
SSN165,D0B166 ,MS167,
SEX168,RACE),
medi:event_tablel(PID42,VID43,EID40,DESC44,DATE41),
med1:role_tablel(PIDl,VIDl,_VO,PRID,RT,RTD),
medl:physician_tablei(_Vi,NM,ADR,_V2,_V3,LIC45),
_V3 = zIP, _V2 = CTY, _Vi = PRID, _VO = EID40,
LIC45 = LIC344, PID42 = ID156,
PID42 <= 125000, PID42 >= 120000

Node list id: 2
Node
Dep. count: 1
Source id: 5, Type: TORACLE

A-35

Query: mql(NM346,CTY,ZIP,LIC348) :-
medQ:physician_tableZ(ID345,NM346,ADR347,CTY,ZIP,
LIC348,SC,SR)
Next: 3

Node
Dep. count: 1
Source id: 4, Type: TORACLE
Query: mq2(LN157,FN158,DESC44,_V2,_V3,LIC45) :-
medl:patient_tablel(ID156,LN157,FN158,MI159,ADR160,
CTY161,ST162,ZIP163,CTR164,
SSN165,D0B166,M5167,
SEX168,RACE) ,
medl:event_tablel(PID42,VID43,EID40,DESC44,DATE41),
medl:role_tablel(PID1,VID1,_VO,PRID,RT,RTD),
medl:physician_tablel1(_V1,NM,ADR,_V2,_V3,LIC45),
-V1i = PRID, _VO = EID40, PID42 = ID156,
PID42 <= 125000, PID42 >= 120000
Next: 3

Node list id: 3
Node

Dep. count: 2 ,

Source id: 0, Type: MEDIATOR

Query: q_2(LN157,FN158,DESC44,NM346) :-
mq1 (NM346,CTY,ZIP,LIC348),
mq2(LN157,FN158,DESC44,_V2,_V3,LIC45),
_V3 = ZIP, _V2 = CTY, LIC45 = LIC348

Node list id: 4
Node
Dep. count: 1
Source id: 4, Type: TORACLE
Query: mq3(NM342,PID42,DESC44) :-
medl1:physician_table1(ID341,NM342,ADR343,CTY,ZIP,
LIC344), |

A-36

medl:event_tablel(PID42,VID43,EID40,DESC44,DATE41),
medl:role_tablel(PID1,VID1,_VO,PRID,RT,RTD),
medl:physician_tablel(_V1,NM,ADR,_V2,_V3,LIC45),
_v3 = Z1p, _V2 = CTY, _Vi = PRID, _VO = EID40,
LIC45 = LIC344, PID42 <= 125000, PID42 >= 120000

Next: 5

Node

Dep. count: 1

Source id: 5, Type: TORACLE

Query: mq4(ID172,LN173,FN174) :-

med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,

CTY177,8T178,Z2IP179,CTR180,
SSN181,D0B182,MS183,SEX184)

Next: 5

Node list id: 5
Node
Dep. count: 2
Source id: 0, Type: MEDIATCR
Query: q_3(LN173,FN174,DESC44,NM342) :-
mq3 (NM342,PID42,DESC44),
mq4(ID172,LN173,FN174), PID42 = ID172

Node list id: 6
Node

Dep. count: 1

Source id: 5, Type: TORACLE

Query: mq5(ID172,LN173,FN174) :-

med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,

CTY177,5T178,ZIP179,CTR180,
SSN181,D0B182,MS183,SEX184)

Next: 7

Node
Dep. count: 1

A-37

Source id: 4, Type: TORACLE

Query: mq6(PID42,DESC44,_V2,-V3,LIC45) :-
medl:event_tablel(PID42,VID43,EID40,DESC44,DATE41),
medl:role_tablel (PID1,VID1,_VO,PRID,RT,RTD),
medl:physician_table1(_V1,NM,ADR,_V2,_V3,LIC45),
V1 = PRID, _VO = EID40, PID42 <= 125000,
PID42 >= 120000

Next: 7

Node
Dep. count: 1
Source id: 5, Type: TORACLE
Query: mq8(NM346,CTY,ZIP,LIC348) :-
med2:physician_table2(ID345,NM346,ADR347,CTY,ZIP,
LIC348,SC,SR)

Next: 8

Node list id: 7
Node
Dep. count: 2
Source id: 0, Type: MEDIATOR
Query: mq7(LN173,FN174,DESC44,_V2,_V3,LIC45) :-
mq5(ID172,LN173,FN174),
mq6 (PID42,DESC44,_V2,_V3,LIC45), PID42 = ID172

Next: 8

Node list id: 8
Node

Dep. count: 2

Source id: 0, Type: MEDIATOR

Query: q_4(LN173,FN174,DESC44,NM346) :-
mq7 (LN173,FN174,DESC44, V2, -V3,LIC45),
mq8 (NM346,CTY,ZIP,LIC348),
-V3 = ZIP, _V2 = CTY, LIC45 = LIC348

Node list id: 9
Node

A-38

Dep. count: 1
Source id: 4, Type: TORACLE
Query: mq9(ID156,LN157,FN158) :-
medl:patient_table1(ID156,LN157 ,FN158,MI159,ADR160,
CTY161,ST162,ZIP163,CTR164,
SSN165,D0B166,MS167,
SEX168,RACE)

Next: 10

Node

Dep. count: 1

Source id: 5, Type: TORACLE

Query: mq10(PID48,DESC49,_V2,_V3,LIC50) :-
med2:event_table2(PID48,EID46,ADT,DDT,SUBJ,

PRID,EDT47),
med2:clinical_table2(CCS,_V0,DESC49,TYPE),
med2:physician_table2(_V1,NM,ADR,_V2,_V3,LIC50,
SC,SR),

_Vi = PRID, _VO = SUBJ, PID48 <= 125000,
PID48 >= 120000

Next: 10

Node
Dep. count: 1
Source id: 4, Type: TORACLE
Query: mq12(NM342,CTY,ZIP,LIC344) :-
medl:physician_tablel(ID341,NM342,ADR343,CTY,ZIP,

LIC344)
Next: 11

Node list id: 10
Node
Dep. count: 2
Source id: 0, Type: MEDIATOR
Query: mql1(LN157,FN158,DESC49,_V2,_V3,LIC50) :-
mq9(ID156,LN157 ,FN158),
mq10(PID48,DESC49,_V2,_V3,LIC50), PID48 = ID156

A-39

Next: 11

Node list id: 11
Node

Dep. count: 2

Source id: 0, Type: MEDIATOR

Query: q_5(LN157,FN158,DESC49,NM342) :-
mq11(LN157,FN158,DESC49,_V2,_V3,LIC50),
mq12(NM342,CTY,ZIP,LIC344),
V3 = ZIP, _V2 = CTY, LIC50 = LIC344

Node list id: 12
Node
Dep. count: 1
Source id: 5, Type: TORACLE
Query: mq13(NM346,PID48,DESC49) :-
med2:physician_table2(ID345,NM346,ADR347,CTY,ZIP,
LIC348,SC,SR),
med2:event_table2(PID48,EID46,ADT,DDT,SUBJ,
PRID,EDTA47),
med2:clinical_table2(CCS,_V0,DESC49,TYPE),
med2:physician_table2(_V1,NM,ADR,_V2,_V3,LIC50,
_v4,_V5),
V6 = SR, _V4 = s8C, _V3 = ZIP, _V2 = CTY,
Vi = PRID, _VO = SUBJ, LIC50 = LIC348,
PID48 <= 125000, PID48 >= 120000
Next: 13

Node

Dep. count: 1

Source id: 4, Type: TORACLE

Query: mql14(ID156,LN157,FN158) :-

medl:patient_table1(ID156,LN157,FN1568,MI159,ADR160,

CTY161,ST162,ZIP163,CTR164,
SSN165,D0B166,MS167,
SEX168,RACE)

Next: 13

A-40

Node 1list id: 13
Node
Dep. count: 2
Source id: 0, Type: MEDIATOR
Query: q_6(LN157,FN158,DESC49,NM346) :-
mq13 (NM346,PID48,DESC49) ,
mq14 (ID156,LN157 ,FN158), PID48 = ID156

Node list id: 14
Node
Dep. count: 1
Source id: 4, Type: TORACLE
Query: mq15(NM342,CTY,ZIP,LIC344) :-
med1:physician_tablel(ID341,NM342,ADR343,CTY,ZIP,
LIC344)
Next: 15

Node
Dep. count: 1
Source id: 5, Type: TORACLE
Query: mql6(LN173,FN174,DESC49,_V2,_V3,LIC50) :-
med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,
CTY177,8T178,Z21P179,CTR180,
SSN181,D0B182,MS183,SEX184),
med2:event_table2(PID48,EID46,ADT,DDT,SUBJ,
PRID,EDT47),
med2:clinical_table2(CCS,_V0,DESC49,TYPE),
med2:physician_table2(_V1,NM,ADR,_V2,_V3,LIC50,
SC,SR),
_Vi = PRID, _VO = SUBJ, PID48 = ID172,
PID48 <= 125000, PID48 >= 120000
Next: 15

Node list id: 15

Node
Dep. count: 2

A-41

Source id: 0, Type: MEDIATOR

Query: q_7(LN173,FN174,DESC49,NM342) :-

| mq15(NM342,CTY,ZIP,LIC344),
mq16 (LN173,FN174,DESC49, V2, _V3,LIC50),
_V3 = ZIP, _V2 = CTY, LIC50 = LIC344

Node list id: 16
Node
Dep. count: 1
Source id: 5, Type: TORACLE
Query: q_8(LN173,FN174,DESC49,NM346) :-
med2:physician_table2(ID345,NM346,ADR347,CTY,ZIP,
LIC348,SC,SR),
med2:patient_table2(ID172,LN173,FN174,MI175,ADR176,
CTY177,ST178,ZIP179,CTR180,
SSN181,D0B182,MS183,SEX184) ,
med2:event_table2(PID48,EID46,ADT,DDT,SUBJ,
PRID,EDT47),
med2:clinical_table2(CCS,_V0,DESC49,TYPE),
med2:physician_table2(_V1,NM,ADR,_V2,_V3,LIC50,
- _V4,_V5),
_V6 = SR, _V4 = SC, _V3 = ZIP, _V2 = CTY,
_Vi = PRID, _VO = SUBJ, LIC50 = LIC348,
PID48 = ID172, PID48 <= 125000, PID48 >= 120000

Plan execution:

C MED1

TORACLE

SELECT DISTINCT t2.pa_last_nm, t2.pa_first_nm, t3.ev_event_desc,

t1.pr_name

FROM medl.physician_tablel t1, medl.patient_tablel t2,
medl.event_tablel t3, medl.role_tablel t4,
medl.physician_tablel t5

WHERE t5.pr_zip = tl.pr_zip AND t5.pr_city = tl.pr_city AND

A-42

t5.pr_provider_id = t4.provider_id AND

t4.event_id = t3.ev_event_id AND

tS.pr_state_license = tl1.pr_state_license AND

t3.ev_pat_id = t2.pa_pat_id AND t3.ev_pat_id <= 125000 AND
t3.ev_pat_id >= 120000

C CLI2

TORACLE

SELECT DISTINCT t1.pr_name, tl.pr_city, tl.pr_zip,
tl.pr_state_license

FROM med2.physician_table2 ti1

C MED1

TORACLE

SELECT DISTINCT ti.pa_last_nm, tl.pa_first_nm, t2.ev_event_desc,

t4.pr_city, t4.pr_zip, t4.pr_state_license

FROM med1.patient_tablel t1, medl.event_tablel t2,
medl.role_tablel t3, medl.physician_tablel t4

WHERE t4.pr_provider_id = t3.provider_id AND
t3.event_id = t2.ev_event_id AND
t2.ev_pat_id = tl.pa_pat_id AND t2.ev_pat_id <= 125000 AND
t2.ev_pat_id >= 120000

MEDIATOR

q-2(LN157 ,FN158,DESC44,NM346) :-
mql(NM346,CTY,ZIP,LIC348),
mq2(LN157 ,FN158,DESC44, _V2,_V3,LIC45),
-V3 = ZIP, _V2 = CTY, LIC45 = LIC348

C MED1
TORACLE
SELECT DISTINCT t1.pr_name, t2.ev_pat_id, t2.ev_event_desc
FROM medl.physician_tablel t1, medl.event_tablel t2,
medl.role_tablel t3, medl.physician_tablel t4
WHERE t4.pr_zip = tl.pr_zip AND t4.pr_city = tl.pr_city AND
t4.pr_provider_id = t3.provider_id AND
t3.event_id = t2.ev_event_id AND

A-43

t4.pr_state_license = t1.pr_state_license AND
t2.ev_pat_id <= 125000 AND t2.ev_pat_id >= 120000

C CLI2

TORACLE

SELECT DISTINCT tl.pa_pat_id, t1.pa_last_nm, ti.pa_first_nm
FROM med2.patient_table2 ti

MEDIATOR
q-3(LN173,FN174,DESC44,NM342) :-

mq3 (NM342,PID42,DESC44),

mq4 (ID172,LN173,FN174), PID42 = ID172

C CLI2

TORACLE

SELECT DISTINCT tl.pa_pat_id, t1.pa_last_nm, tl.pa_first_nm
FROM med2.patient_table2 ti

C MED1
TORACLE
SELECT DISTINCT tl.ev_pat_id, tl.ev_event_desc, t3.pr_city,
t3.pr._zip, t3.pr_state_license
FROM medl.event_tablel t1, medl.role_tablel t2,
medl.physician_tablel t3
WHERE t3.pr_provider_id = t2.provider_id AND
t2.event_id = tl.ev_event_id AND
tl.ev_pat_id <= 125000 AND tl.ev_pat_id >= 120000

MEDIATOR

mq7(LN173,FN174,DESC44, _V2,_V3,LIC45) :-
mq5(ID172,LN173,FN174),
mq6(PID42,DESC44,_V2,_V3,LIC45), PID42 = ID172

C CLI2

TORACLE

SELECT DISTINCT tl1.pr_name, tl.pr_city, ti.pr_zip,
' tl.pr_state_license

A-44

FROM med2.physician_table2 t1

MEDIATOR

q_4(LN173,FN174,DESC44,NM346) :-
mq7 (LN173,FN174,DESC44,_V2,_V3,LIC45),
mq8 (NM346,CTY,ZIP,LIC348),
_V3 = ZIP, _V2 = CTY, LIC45 = LIC348

C MED1

TORACLE

SELECT DISTINCT t1.pa_pat_id, tl.pa_last_nm, tl.pa_first_nm
FROM med!.patient_tablel t1

C CLI2
TORACLE
SELECT DISTINCT ti.ev_pat_id, t2.clinical_code_desc, t3.pr_city,
t3.pr_zip, t3.pr_state_license
FROM med2.event_table2 t1, med2.clinical_table2 t2,
med2.physician_table2 t3
WHERE t3.pr_provider_id = t1.physician_id AND
t2.clinical_code = tl.ev_subjt AND tl.ev_pat_id <= 125000 AND
tl.ev_pat_id >= 120000

MEDIATOR

mq11 (LN157,FN158,DESC49,_V2,_V3,LIC50) :-
mq9(ID156,LN157,FN158),
mq10(PID48,DESC49,_V2,_V3,LIC50), PID48 = ID156

C MED1

TORACLE

SELECT DISTINCT t1.pr_name, til.pr_city, tl.pr_zip,
tl.pr_state_license

FROM medl.physician_tablel ti

MEDIATOR
q_5(LN157 ,FN158,DESC49,NM342) :-
mq11(LN157,FN158,DESC49, _V2,_V3,LIC50),

A-45

mq12(NM342,CTY,ZIP,LIC344),
_V3 = ZIP, _V2 = CTY, LIC50 = LIC344

C CLI2
TORACLE
SELECT DISTINCT tl.pr_name, t2.ev_pat_id, t3.clinical_code_desc
FROM med2.physician_table2 t1, med2.event_table2 t2,
med2.clinical_table2 t3, med2.physician_table2 t4
WHERE t4.ps_spec_rank = tl.ps_spec_rank AND
t4.ps_spec_code = tl.ps_spec_code AND
t4.pr_zip = t1.pr_zip AND t4.pr_city = tl.pr_city AND
t4.pr_provider_id = t2.physician_id AND
t3.clinical_code = t2.ev_subjt AND
t4.pr_state_license = tl.pr_state_license AND
t2.ev_pat_id <= 125000 AND t2.ev_pat_id >= 120000

C MED1

TORACLE

SELECT DISTINCT t1.pa_pat_id, tl1.pa_last_nm, tl.pa_first_nm
FROM med1.patient_tablel ti

MEDIATOR

q_6(LN157,FN158,DESC49,NM346) :-
mq13(NM346 ,PID48,DESC49), mq14(ID156,LN157,FN158),
PID48 = ID156

C MED1

TORACLE

SELECT DISTINCT ti.pr_name, tl.pr_city, tl.pr_zip,
tl.pr_state_license

FROM medl.physician_tablel t1

C CLI2
TORACLE
SELECT DISTINCT til.pa_last_nm, tl.pa_first_nm,
: t3.clinical_code_desc, t4.pr_city, t4.pr_zip,
t4.pr_state_license

A-46

FROM med2.patient_table2 ti, med?2.event_table2 t2,
med2.clinical_table2 t3, med2.physician_table2 t4
WHERE t4.pr_provider_id = t2.physician_id AND
t3.clinical_code = t2.ev_subjt AND
t2.ev_pat_id = tl.pa_pat_id AND
t2.ev_pat_id <= 125000 AND t2.ev_pat_id >= 120000

MEDIATOR

q_7(LN173,FN174,DESC49,NM342) :-
mq15(NM342,CTY,ZIP,LIC344),
mq16(LN173,FN174,DESC49,_V2,_V3,LIC50),
_V3 = ZIP, _V2 = CTY, LIC50 = LIC344

C CLI2
TORACLE
SELECT DISTINCT t2.pa_last_nm, t2.pa_first_nm,
t4.clinical_code_desc, tl.pr_name
FROM med2.physician_table2 t1, med2.patient_table2 t2,
med?2.event_table2 t3, med2.clinical_table2 t4,
med2.physician_table2 t5
WHERE t5.ps_spec_rank = tl.ps_spec_rank AND
t5.ps_spec_code = t1.ps_spec_code AND
t5.pr_zip = tl.pr_zip AND t5.pr_city = tl.pr_city AND
t5.pr_provider_id = t3.physician_id AND
t4.clinical_code = t3.ev_subjt AND
t5.pr_state_license = tl.pr_state_license AND
t3.ev_pat_id = t2.pa_pat_id AND t3.ev_pat_id <= 125000 AND
t3.ev_pat_id >= 120000

«U).5. GOVERNMENT PRINTING OFFICE: 1998-610-130-61222

A-47

DISTRIBUTION LIST

addresses numbar
of copies

MARY DENZ 5
AFRL/ZIFGS

525 BROOKS RD.

ROME, MY 13441-4505

SRI INTERNATIONAL 5
ATTN: STEVEN DAWSON

333 RAVENSWODD AVE.

MENLO PARK, VA 94025-3493

AFRL/IFOIL 1
TECHNICAL LIBRARY

26 ELECTRONILC PKY

ROME NY 13441-4514

ATTENTION: OTIC-0CC 2
DEFENSE TECHNICAL INFJ CENTER

8725 JOHN J. KINGMAN ROAD, STE 0944

FT. BELVOIR, VA 22060-6218

ADVANLED RESEARCH PROJECTS AGENCY 1
3701 NDORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

RELIABILITY ANALYSIS CENTER 1
201 MILL 57.
ROME NY 13440-3200

ATTN: GWEM MNGUYEN 1
GIDEP '

P.0. 80X 8000

CORONA CA 91718-8000

pL-1

AFIT ACADEMIC LIBRARY/LDEE

2350 P STREET

AREA By BLDG 642

WRIGHT-PATTERSON AFB 0H 45433-7765

WRIGHT LABORATORY/MTM, BLDG 653
2977 P STREEY, STE 6
WRIGHT-PATTERSON AFB OH 456433-7739

ATTN: GILBERT G. KUPERMAN
AL/CFHI, BLDG. 2458

2255 H STREEY

WRIGHT-PATTERSON AFB OH 45433-7022

ATTN: TECHNICAL DOCUMENTS CENTER

OL AL HSC/HRG

2698 6 STREET

HRIGHT-PATTERSON AF3 OH 45433-7604

AIR UNIVERSITY LIBRARY CAULZLSAD)
600 CHENNAULT CIRCLE
MAXWELL AFB AL 36112-6424

US ARMY S5DC

P.0- 30X 1500

ATTN: CSSD-IM-PA
HUNTSVILLE AL 35807-3801

TECHNICAL LIBRARY DO2T4(PL~TS)
SPAWARSYSCEN

53560 HULL STREET

SAN DIEGD CA 92152-~5001

NAVAL AIR WARFARE CENTER
WEAPONS DIVISION

CODE 43L00DD

1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555~6100

[4¥)

DL~

l

)

SPACE £ NAVAL WARFARE SYSTEMS CMD

ATTN: PMW1463-1 (R. SKIANT)RM 1044A
53560 HULL 3T.
SAN DIEGC, LA 92152-5002

SPACE £ MAVAL WARFARE SYSTEMS
COMMAND, EXECUTIVE DIRECTDOR (PD12A)
ATTN: MR. CARL ANDRIANI

2451 CRYSTAL DRIVE

ARLINGTON VA 22245-5200

COMMANDER, SPALE & NAVAL WARFARE
SYSTEMS COMMAND (CODE 32)
2451 CRYSTAL DRIVE

ARLINGTON VA 22245-5200

CDRs US ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSMI-RD-CS-R, DBCS

REDSTONE ARSENAL AL 35898-5241

ADVISORY GROUP ON ELECTRON DEVICES
SUITE 500

1745 JEFFERSON DAVIS HIGHWAY
ARLINGTON VA 22202

REPORT COLLECTION, CIC-14

M5 P354

LO5S ALAMOS NATIONAL LABDRATORY
LOS ALAMOS NM B7545

AEDC LIBRARY

TECHNICAL REPORTS FILE

100 KINDEL DRIVE, SUITE €211
ARNGLD AFB TN 37339-3211

COMMANDER

USAISC

ASHC~-IMD-L, BLDG 61801

FT HUACHUCA AZ 85613-5000

US DEPT OF TRANSPORTATION LIBRARY
FB10A, M-457, RM 930

800 INDEPENDENCE AVE, 3SW

WASH DC 22591

AWS TECHNICAL LIBRARY , 1
859 BUCHANAN STREET, RM. 427
SCOTY AF8 IL 62225-5118

AFIWC/7MSY ' 1
102 HALL BLVD, STE 315
SAN ANTONIJ TX 78243-7015

SOFTWARE ENGINEERING INSTITUTE 1
CARNEGTE MELLON UNIVERSITY

4500 FIFTH AVENUE

PITTSBURGH PA 15213

NSA/CSS 1
K1
FT MEADE MD 20755-6000

ATTN: OM CHAUHAN 1
DCMC WICHITA

271 WEST THIRD STREET NORTH

SUITF 6000 '

WICHITA XS 67202-1212

PHILLIPS LABORATORY 1
PL/7TL (LIBRARY)

5 WRIGHT STREET

HANSCOM AFS8 MA 01731-3004%

ATTN: EILEEN LADUKEZD460 1
MITRE CORPDRATION
202 BURLINGTON RD
BEDFORD MA 01730

DUSDCP)I/DTSA/DUTD 2
ATTN: PATRICK G. SULLIVAN, JR.

400 ARMY NAVY DRIVE

SUITE 300

ARLINGTON VA 22202

DL~4

